## FIRST® Robotics Competition Common Core Mathematics Standards Alignment & Instructional Exemplars

Rationale There is no evidence that the standard is addressed as part of a *FIRST*® program.

This standard potentially could be addressed as part of a  $FIRST \otimes$  program either by actions that the coach/mentor takes when working with the students or by conditions established by the program for that given year.

The standard is clearly addressed by program activities.



## Standards for Mathematical Practice

MP1

FIRST® Alignment

Standards for Mathematical Practice

Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Standards for Mathematical Practice

Reason abstractly MP2

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. Instructional Exemplar

As part of the *FIRST®* Robotics Competition students will be expected to analyze the various challenges, develop solutions, test and refine their answers all while using mathematical formulas and data. These actions are at the heart of the mathematical practice of making sense of problems and persevering to determine solutions.

Students in the *FIRST* ® Robotics Competition will solve a variety of problems allowing them to develop their ability to reason both quantitatively and abstractly. As they work to solve problems associated with designing, building and programming their robot as well as developing a game strategy, students will have to make sense of quantities and their relationships in problem situations.

Construct viable Standards for arguments and Mathematical MP3 critique the reasoning Practice of others. Standards for Model with MP4 Mathematical mathematics. Practice Standards for Use appropriate tools Mathematical MP5 strategically. Practice

mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all aradoo oon liaton or rood the nto of others deside Mathematically proficient students can apply the mathematics

they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Building off the first practice, students in the *FIRST*® Robotics Competition will interact with their peers and be expected to provide reasoned critique of solutions developed supported by evidence and viable arguments.

Students in the *FIRST®* Robotics Competition will use mathematics and mathematical lools (e.g., charts, graphs, tables) to create different models that inform choices they make about robot design and programming and to track and predict competitor's performance, as well as identify potential alliance partnerships.

Students in the *FIRST*® Robotics Competition will use a variety of age-appropriate mathematical tools (e.g., charts, graphs, tables, calculators) to solve mathematical problems encountered as they work to program their robot and optimize their strategy to address the various challenges.

| Standards for<br>Mathematical<br>Practice | Attend to precision.                                            | MP6         | Mathematically proficient students try to communicate precisely<br>to others. They try to use clear definitions in discussion with<br>others and in their own reasoning. They state the meaning of<br>the symbols they choose, including using the equal sign<br>consistently and appropriately. They are careful about<br>specifying units of measure, and labeling axes to clarify the<br>correspondence with quantities in a problem. They calculate<br>accurately and efficiently, express numerical answers with a<br>degree of precision appropriate for the problem context. In the<br>elementary grades, students give carefully formulated<br>explanations to each other. By the time they reach high school<br>they have learned to examine claims and make explicit use of<br>definitions.                                                                                                                                                                                                                                                                       |                     | Students in the <i>FIRST</i> ® Robotics Competition in order to<br>complete the challenges in the most efficient manner possible<br>will have to develop their mathematical precision as they program<br>their robot to interact with the different challenge structures as<br>well as navigate the playing field.         |
|-------------------------------------------|-----------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standards for<br>Mathematical<br>Practice | Look for and make use of structure.                             | MP7         | Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 × 8 equals the well remembered 7 × 5 + 7 × 3, in preparation for learning about the distributive property. In the expression $x2 + 3x + 14$ , older students can see the 14 as $2 \times 7$ and the 9 as $2 + 7$ . They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. |                     | Students in the <i>FIRST</i> ® Robotics Competition will learn to recognize and use patterns to solve problems and challenges. In particular, students will take advantage of the properties of different shapes when they build their robot, program its movements, and determine solutions for the different challenges. |
| Standards for<br>Mathematical<br>Practice | Look for and express<br>regularity in repeated<br>reasoning.    | MP8         | Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation ( $y - 2$ )/( $x - 1$ ) = 3. Noticing the regularity in the way terms cancel when expanding ( $x - 1$ )( $x + 1$ ), ( $x - 1$ )( $x2 + x + 1$ ), and ( $x - 1$ )( $x3 + x2 + x + 1$ ) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.                                                                                        |                     | Students in the <i>FIRST</i> ® Robotics Competition will be able to experience regularity in repeated reasoning as they program their robot to complete the different challenges in the game.                                                                                                                              |
| Domain                                    | Cluster                                                         | Standard    | Indicator/Skill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FIRST®<br>Alignment | Instructional Exemplar                                                                                                                                                                                                                                                                                                     |
| The Real Number<br>System                 | Extend the properties<br>of exponents to<br>rational exponents. | HS.N-RN.A.1 | Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for raticals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want ( $5^{1/3}$ ) <sup>3</sup> = $5^{(1/3)3}$ to hold, so ( $5^{1/3}$ ) <sup>3</sup> must equal 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | Not Applicable                                                                                                                                                                                                                                                                                                             |
| The Real Number<br>System                 | Extend the properties<br>of exponents to<br>rational exponents. | HS.N-RN.A.2 | Rewrite expressions involving radicals and rational exponents<br>using the properties of exponents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | Not Applicable                                                                                                                                                                                                                                                                                                             |
| The Real Number<br>System                 | Use properties of rational and irrational numbers.              | HS.N-RN.B.3 | Explain why the sum or product of two rational numbers is<br>rational; that the sum of a rational number and an irrational<br>number is irrational; and that the product of a nonzero rational<br>number and an irrational<br>number is irrational.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | Not Applicable                                                                                                                                                                                                                                                                                                             |

| Quantities                      | Reason quantitatively<br>and use units to solve<br>problems.                     | HS.N-Q.A.1    | Use units as a way to understand problems and to guide the<br>solution of multi-step problems; choose and interpret units<br>consistently in formulas; choose and interpret the scale and the<br>origin in graphs and data displays.                                                   |
|---------------------------------|----------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quantities                      | Reason quantitatively<br>and use units to solve<br>problems.                     | HS.N-Q.A.2    | Define appropriate quantities for the purpose of descriptive modeling.                                                                                                                                                                                                                 |
| Quantities                      | Reason quantitatively<br>and use units to solve<br>problems.                     | HS.N-Q.A.3    | Choose a level of accuracy appropriate to limitations on<br>measurement when reporting quantities.                                                                                                                                                                                     |
| The Complex<br>Number System    | Perform arithmetic<br>operations with<br>complex numbers.                        | HS.N-CN.A.1   | Know there is a complex number i such that $i^2 = -1$ , and every complex number has the form a + bi with a and b real.                                                                                                                                                                |
| The Complex<br>Number System    | Perform arithmetic<br>operations with<br>complex numbers.                        | HS.N-CN.A.2   | Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.                                                                                                                                              |
| The Complex<br>Number System    | Perform arithmetic<br>operations with<br>complex numbers.                        | HS.N-CN.A.3   | (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.                                                                                                                                                                            |
| The Complex<br>Number System    | Represent complex<br>numbers and their<br>operations on the<br>complex plane.    | HS.N-CN.B.4   | (+) Represent complex numbers on the complex plane in<br>rectangular and polar form (including real and imaginary<br>numbers), and explain why the rectangular and polar forms of a<br>given complex number represent the same number.                                                 |
| The Complex<br>Number System    | Represent complex<br>numbers and their<br>operations on the<br>complex plane.    | HS.N-CN.B.5   | (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1 + \sqrt{3} i) 3 = 8$ because $(-1 + \sqrt{3} i)$ has modulus 2 and argument 120°. |
| The Complex<br>Number System    | Represent complex<br>numbers and their<br>operations on the<br>complex plane.    | HS.N-CN.B.6   | (+) Calculate the distance between numbers in the complex<br>plane as the modulus of the difference, and the midpoint of a<br>segment as the average of the numbers at its endpoints.                                                                                                  |
| The Complex<br>Number System    | Use complex numbers<br>in polynomial<br>identities and                           | HS.N-CN.C.7   | Solve quadratic equations with real coefficients that have<br>complex solutions.                                                                                                                                                                                                       |
| The Complex<br>Number System    | equations<br>Use complex numbers<br>in polynomial<br>identities and<br>equations | HS.N-CN.C.8   | (+) Extend polynomial identities to the complex numbers. For example, rewrite x2 + 4 as $(x + 2i)(x - 2i)$ .                                                                                                                                                                           |
| The Complex<br>Number System    | Use complex numbers<br>in polynomial<br>identities and<br>equations.             | HS.N-CN.C.9   | (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.                                                                                                                                                                                           |
| Vector and Matrix<br>Quantities | Represent and model with vector quantities.                                      | HS.N-VM.A.1   | (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v,  v ,   v  , v).                                                                  |
| Vector and Matrix<br>Quantities | Represent and model with vector quantities.                                      | HS.N-VM.A.2   | (+) Find the components of a vector by subtracting the<br>coordinates of an initial point from the coordinates of a terminal<br>point.                                                                                                                                                 |
| Vector and Matrix<br>Quantities | Represent and model with vector quantities.                                      | HS.N-VM.A.3   | (+) Solve problems involving velocity and other quantities that<br>can be represented by vectors.                                                                                                                                                                                      |
|                                 |                                                                                  |               | (+) Add and subtract vectors.                                                                                                                                                                                                                                                          |
| Vector and Matrix<br>Quantities | Perform operations on vectors.                                                   | HS.N-VM.B.4.A | a. Add vectors end-to-end, component-wise, and by the<br>parallelogram rule. Understand that the magnitude of a sum of<br>two vectors is typically not the sum of the magnitudes                                                                                                       |
| Vector and Matrix               | Porform operations on                                                            |               | (+) Add and subtract vectors.                                                                                                                                                                                                                                                          |
| Quantities                      | Perform operations on vectors.                                                   | HS.N-VM.B.4.B | <ul> <li>b. Given two vectors in magnitude and direction form,<br/>determine the magnitude and direction of their sum.</li> </ul>                                                                                                                                                      |

| As students design, build, program, and operate their robot they<br>will make use of different units to make sense and solve<br>problems as well as communicate information to others.                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| As students design, build, program, and operate their robot they<br>will need to appropriately define quantities and the units that<br>measure them so they can be used in modeling.<br>As students design, build, program, and operate their robot they<br>will need to decide what is the appropriate level of accuracy as<br>they make calculations and report results. |
| Not Applicable                                                                                                                                                                                                                                                                                                                                                             |
| As the students program their robot to operate autonomously<br>they will need to use vector quantities to determine robot motion.                                                                                                                                                                                                                                          |
| As the students program their robot to operate autonomously<br>they will need to find the components of different vectors to<br>accurately program the motion of the robot.<br>As the students program their robot to operate autonomously<br>they will need to solve problems with involving velocity as a<br>vector to accurately program the motion of the robot.       |
| As the students program their robot to operate autonomously<br>they will need to solve vector problems using a variety of<br>methods to accurately program the motion of the robot.                                                                                                                                                                                        |
| As the students program their robot to operate autonomously<br>they will need to determine the sum of the magnitude and<br>direction of two vectors to accurately program the motion of the<br>robot.                                                                                                                                                                      |

| Vector and Matrix<br>Quantities    | Perform operations on vectors.                                                                     | HS.N-VM.B.4.C  | (+) Add and subtract vectors.<br>c. Understand vector subtraction v – w as v + (–w), where –w is<br>the additive inverse of w, with the same magnitude as w and<br>pointing in the opposite direction. Represent vector subtraction<br>graphically by connecting the tips in the appropriate order, and<br>perform vector subtraction component-wise. | As the students program their robot to operate autonomously<br>they will need to solve vector subtraction problems using a<br>variety of methods, including graphically, to accurately program<br>the motion of the robot.                                     |
|------------------------------------|----------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vector and Matrix<br>Quantities    | Perform operations on vectors.                                                                     | HS.N-VM.B.5.A  | <ul> <li>(+) Multiply a vector by a scalar.</li> <li>a. Represent scalar multiplication graphically by scaling vectors<br/>and possibly reversing their direction; perform scalar<br/>multiplication component-wise, e.g., as c(vx, vy) = (cvx, cvy).</li> </ul>                                                                                      | As the students program their robot to operate autonomously<br>they will need to multiply a vector by a scalar using a variety of<br>methods, including graphically or component-wise, to accurately<br>program the motion of the robot.                       |
| Vector and Matrix<br>Quantities    | Perform operations on vectors.                                                                     | HS.N-VM.B.5.B  | <ul> <li>(+) Multiply a vector by a scalar.</li> <li>b. Compute the magnitude of a scalar multiple cv using   cv   =  c v. Compute the direction of cv knowing that when  c v ≠ 0, the direction of cv is either along v (for c &gt; 0) or against v (for c &lt; 0).</li> </ul>                                                                       | As the students program their robot to operate autonomously<br>they will need to compute the magnitude of a scalar multiple<br>using a variety of methods to accurately program the motion of<br>the robot.                                                    |
| Vector and Matrix<br>Quantities    | Perform operations on<br>matrices and use<br>matrices in<br>applications.                          | HS.N-VM.C.6    | (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.                                                                                                                                                                                                                                | As the students manipulate the data they collect to program the<br>robot to function autonomously, they will use matrices.                                                                                                                                     |
| Vector and Matrix<br>Quantities    | Perform operations on<br>matrices and use<br>matrices in<br>applications.<br>Perform operations on | HS.N-VM.C.7    | (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.                                                                                                                                                                                                                                     | Depending upon how the students want to manipulate the data<br>they collect to program the robot to function autonomously, they<br>may multiply matrices by a scalar.                                                                                          |
| Vector and Matrix<br>Quantities    | matrices and use<br>matrices in<br>applications.                                                   | HS.N-VM.C.8    | (+) Add, subtract, and multiply matrices of appropriate dimensions.                                                                                                                                                                                                                                                                                   | As students manipulate the data they collect to program the<br>robot to function autonomously, they may add, subtract, and<br>multiply matrices.                                                                                                               |
| Vector and Matrix<br>Quantities    | Perform operations on<br>matrices and use<br>matrices in<br>applications.                          | HS.N-VM.C.9    | (+) Understand that, unlike multiplication of numbers, matrix<br>multiplication for square matrices is not a commutative<br>operation, but still satisfies the associative and distributive<br>properties.                                                                                                                                            | If students are working with matrices to manipulate the data their<br>using to program the robot, they may have the opportunity to<br>realize that matrix multiplication for square matrices is not a<br>commutative operation.                                |
| Vector and Matrix<br>Quantities    | Perform operations on<br>matrices and use<br>matrices in<br>applications.                          | HS.N-VM.C.10   | (+) Understand that the zero and identity matrices play a role in<br>matrix addition and multiplication similar to the role of 0 and 1 in<br>the real numbers. The determinant of a square matrix is<br>nonzero if and only if the matrix has a multiplicative inverse.                                                                               | If students are working with matrices to manipulate the data their<br>using to program the robot, they may have the opportunity to<br>realize that the determinant of a square matrix is nonzero if and<br>only if the matrix has a multiplicative inverse.    |
| Vector and Matrix<br>Quantities    | Perform operations on<br>matrices and use<br>matrices in<br>applications.                          | HS.N-VM.C.11   | (+) Multiply a vector (regarded as a matrix with one column) by<br>a matrix of suitable dimensions to produce another vector.<br>Work with matrices as transformations of vectors.                                                                                                                                                                    | Since students will have to use vectors to describe the motion of<br>the robot during its autonomous phase, they will work with<br>matrices as transformations of vectors.                                                                                     |
| Vector and Matrix<br>Quantities    | Perform operations on<br>matrices and use<br>matrices in<br>applications.                          | HS.N-VM.C.12   | (+) Work with 2 $\times$ 2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.                                                                                                                                                                                                            | In order to program the robot to autonomously function in the<br>competition space, students may convert the physical space into<br>2x2 matrices.                                                                                                              |
| Seeing Structure in<br>Expressions | Interpret the structure of expressions                                                             | HS.A-SSE.A.1.A | Interpret expressions that represent a quantity in terms of its context.<br>a. Interpret parts of an expression, such as terms, factors, and coefficients.                                                                                                                                                                                            | Depending upon how the coach/mentor approaches the use of<br>equations to determine values to use in robot construction or<br>programming, students may have the opportunity to examine and<br>identify the terms, factors, and coefficients in a calculation. |
| Seeing Structure in                | Interpret the structure                                                                            |                | Interpret expressions that represent a quantity in terms of its context.                                                                                                                                                                                                                                                                              | Depending upon how the coach/mentor approaches the use of<br>equations to determine values to use in robot construction or                                                                                                                                     |
| Expressions                        | of expressions                                                                                     | HS.A-SSE.A.1.B | b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P.                                                                                                                                                                    | programming, students may have the opportunity to simplify<br>complicated expressions by viewing one or more of their parts as<br>a single entity.                                                                                                             |
| Seeing Structure in<br>Expressions | Interpret the structure<br>of expressions                                                          | HS.A-SSE.A.2   | Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$ , thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$ .                                                                                                                            | Depending upon how the coach/mentor approaches the use of<br>equations to determine values to use in robot construction or<br>programming, students may have the opportunity to rewrite<br>equations into equivalent forms that are easier to solve.           |
| Seeing Structure in<br>Expressions | Write expressions in equivalent forms to                                                           | HS.A-SSE.B.3.A | Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.                                                                                                                                                                                                                | Depending upon the challenges encountered in the competition<br>or design features of their robot, students may have the<br>opportunity to factor a quadratic expression to reveal the zeros of                                                                |
| ·                                  | solve problems                                                                                     |                | a. Factor a quadratic expression to reveal the zeros of the function it defines.                                                                                                                                                                                                                                                                      | the function.                                                                                                                                                                                                                                                  |

| Seeing Structure in<br>Expressions                         | Write expressions in<br>equivalent forms to<br>solve problems                 | HS.A-SSE.B.3.B | Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.<br>b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.                                                                                                                                                                                         | Depending upon how the coach/mentor approaches the use of<br>equations to determine values to use in robot programming,<br>students may have the opportunity to complete the square in a<br>quadratic expression to reveal the maximum or minimum value of<br>the function.           |
|------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seeing Structure in<br>Expressions                         | Write expressions in<br>equivalent forms to<br>solve problems                 | HS.A-SSE.B.3.C | Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.<br>c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15 <sup>t</sup> can be rewritten as (1.15 <sup>1/12</sup> ) <sup>12t</sup> ≈ 1.012 <sup>12t</sup> to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. | Depending upon the calculations and formulas used to guide<br>robot construction and programming, students may have the<br>opportunity to use the properties of exponents to transform<br>expressions for exponential functions.                                                      |
| Seeing Structure in<br>Expressions                         | Write expressions in<br>equivalent forms to<br>solve problems                 | HS.A-SSE.B.4   | Derive the formula for the sum of a finite geometric series<br>(when the common ratio is not 1), and use the formula to solve<br>problems. For example, calculate mortgage payments.                                                                                                                                                                                                                                                                  | Students may need to derive the formula for the sum of a finite<br>geometric series (e.g., battery life) to determine values used is<br>robot construction and programming.                                                                                                           |
| Arithmetic with<br>Polynomials and<br>Rational Expressions | Perform arithmetic<br>operations on<br>polynomials                            | HS.A-APR.A.1   | Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.                                                                                                                                                                                                                                              | Depending upon the calculations and formulas used to guide<br>robot construction and programming, students may have the<br>opportunity to realize that polynomials are like integers in that<br>they can be added, subtracted, multiplied, and divided.                               |
| Arithmetic with<br>Polynomials and<br>Rational Expressions | Understand the<br>relationship between<br>zeros and factors of<br>polynomials | HS.A-APR.B.2   | Know and apply the Remainder Theorem: For a polynomial $p(x)$<br>and a number a, the remainder on division by $x - a$ is $p(a)$ , so<br>p(a) = 0 if and only if $(x - a)$ is a factor of $p(x)$ .                                                                                                                                                                                                                                                     | Depending upon the calculations and formulas used to guide<br>robot construction and programming, students may have the<br>opportunity to apply the Remainder Theorem.                                                                                                                |
| Arithmetic with<br>Polynomials and<br>Rational Expressions | Understand the<br>relationship between<br>zeros and factors of<br>polynomials | HS.A-APR.B.3   | Identify zeros of polynomials when suitable factorizations are<br>available, and use the zeros to construct a rough graph of the<br>function defined by the polynomial.                                                                                                                                                                                                                                                                               | Depending upon the calculations and formulas used to guide<br>robot construction and programming, students may have the<br>opportunity to construct a rough graph of the function defined by<br>the polynomial.                                                                       |
| Arithmetic with<br>Polynomials and<br>Rational Expressions | Use polynomial<br>identities to solve<br>problems                             | HS.A-APR.C.4   | Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.                                                                                                                                                                                                                                             | Students may need to use polynomial identities to describe<br>numerical relationships in order to determine the appropriate<br>values to program into the robot to interact with challenges<br>during the autonomous phase of the competition.                                        |
| Arithmetic with<br>Polynomials and<br>Rational Expressions | Use polynomial<br>identities to solve<br>problems                             | HS.A-APR.C.5   | (+) Know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.1                                                                                                                                                                                                                                | Depending upon the exact factors that students are trying to<br>establish the numerical relationship between, they may apply the<br>Binomial Theorem to determines values used to program the<br>robot to interact with challenges during the autonomous phase of<br>the competition. |
| Arithmetic with<br>Polynomials and<br>Rational Expressions | Rewrite rational expressions                                                  | HS.A-APR.D.6   | Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$ , where $a(x)$ , $b(x)$ , $q(x)$ , and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$ , using inspection, long division, or, for the more complicated examples, a computer algebra system.                                                                                                                  | Students will need to rewrite simple rational expressions and use<br>them to describe numerical relationships in order to determine<br>the appropriate values to for robot construction or programming.                                                                               |
| Arithmetic with<br>Polynomials and<br>Rational Expressions | Rewrite rational expressions                                                  | HS.A-APR.D.7   | (+) Understand that rational expressions form a system<br>analogous to the rational numbers, closed under addition,<br>subtraction, multiplication, and division by a nonzero rational<br>expression; add, subtract, multiply, and divide rational<br>expressions.                                                                                                                                                                                    | Students may have the opportunity to realize that rational<br>expressions are like rational numbers in that they can be added,<br>subtracted, multiplied, and divided, as they solve expressions to<br>determine values used in robot contraction and programming.                    |
| Creating Equations                                         | Create equations that describe numbers or relationships                       | HS.A-CED.A.1   | Create equations and inequalities in one variable and use them<br>to solve problems. Include equations arising from linear and<br>quadratic functions, and simple rational and exponential<br>functions.                                                                                                                                                                                                                                              | As students work to determine values to use in robot construction<br>and programming, they will create equations and inequalities in<br>one variable and use them to solve problems.                                                                                                  |
| Creating Equations                                         | Create equations that describe numbers or relationships                       | HS.A-CED.A.2   | Create equations in two or more variables to represent<br>relationships between quantities; graph equations on<br>coordinate axes with labels and scales.                                                                                                                                                                                                                                                                                             | As students work to determine values to use in robot construction<br>and programming, they will create equations in two or more<br>variables to represent relationships between quantities and use<br>them to solve problems.                                                         |

| Creating Equations                              | Create equations that describe numbers or relationships                                      | HS.A-CED.A.3   | Represent constraints by equations or inequalities, and by<br>systems of equations and/or inequalities, and interpret solutions<br>as viable or nonviable options in a modeling context. For<br>example, represent inequalities describing nutritional and cost<br>constraints on combinations of different foods.                                                         |  | As students work to determine values to use in robot construction<br>and programming, they will interpret solutions as viable or<br>nonviable options based on a real-world context.                                                                                                                                                                                               |
|-------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Creating Equations                              | Create equations that describe numbers or relationships                                      | HS.A-CED.A     | Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.                                                                                                                                                                                               |  | As students work to determine values to use in robot construction<br>and programming, they will rearrange formulas to highlight a<br>quantity of interest.                                                                                                                                                                                                                         |
| Reasoning with<br>Equations and<br>Inequalities | Understand solving<br>equations as a<br>process of reasoning<br>and explain<br>the reasoning | HS.A-REI.A.1   | Explain each step in solving a simple equation as following<br>from the equality of numbers asserted at the previous step,<br>starting from the assumption that the original equation has a<br>solution. Construct a viable argument to justify a solution<br>method.                                                                                                      |  | Depending upon the expectations that the coach/mentor sets for<br>the students' work, they may have to construct a viable argument<br>to justify a solution method while working to determine values to<br>use in robot construction and programming.                                                                                                                              |
| Reasoning with<br>Equations and<br>Inequalities | Understand solving<br>equations as a<br>process of reasoning<br>and explain<br>the reasoning | HS.A-REI.A.2   | Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.                                                                                                                                                                                                                                                 |  | As students work to determine values to use in robot construction<br>and programming, they will solve simple rational and radical<br>equations in one variable.                                                                                                                                                                                                                    |
| Reasoning with<br>Equations and<br>Inequalities | Solve equations and inequalities in one variable                                             | HS.A-REI.B.3   | Solve linear equations and inequalities in one variable,<br>including equations with coefficients represented by letters.                                                                                                                                                                                                                                                  |  | As students work to determine values to use in robot construction<br>and programming, they will solve linear equations and<br>inequalities in one variable.                                                                                                                                                                                                                        |
| Reasoning with<br>Equations and<br>Inequalities | Solve equations and<br>inequalities in one<br>variable                                       | HS.A-REI.B.4.A | Solve quadratic equations in one variable.<br>a. Use the method of completing the square to transform any<br>quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic<br>formula from this form.                                                                                                             |  | As students work to determine values to use in robot construction<br>and programming, they may use the method of completing the<br>square to transform any quadratic equation.                                                                                                                                                                                                     |
| Reasoning with<br>Equations and<br>Inequalities | Solve equations and inequalities in one variable                                             | HS.A-REI.B.4.B | Solve quadratic equations in one variable.<br>b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$ ), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a $\pm$ bi for real numbers a and b. |  | As students work to determine values to use in robot construction<br>and programming, they will solve quadratic equations by a variety<br>of methods.                                                                                                                                                                                                                              |
| Reasoning with<br>Equations and<br>Inequalities | Solve systems of equations                                                                   | HS.A-REI.C.5   | Prove that, given a system of two equations in two variables,<br>replacing one equation by the sum of that equation and a<br>multiple of the other produces a system with the same<br>solutions.                                                                                                                                                                           |  | Depending upon the expectations that the coach/mentor sets for<br>the students' work, they may prove that, given a system of two<br>equations in two variables, replacing one equation by the sum of<br>that equation and a multiple of the other produces a system with<br>the same solutions. while working to determine values to use in<br>robot construction and programming. |
| Reasoning with<br>Equations and<br>Inequalities | Solve systems of equations                                                                   | HS.A-REI.C.6   | Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.                                                                                                                                                                                                                                   |  | Depending upon the values students are working to determine<br>for robot construction and programming, they may solve systems<br>of linear equations.                                                                                                                                                                                                                              |
| Reasoning with<br>Equations and<br>Inequalities | Solve systems of<br>equations                                                                | HS.A-REI.C.7   | Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$ .                                                                                                                                    |  | Depending upon the values students are working to determine<br>for robot construction and programming, they may solve a simple<br>system consisting of a linear equation and a quadratic equation<br>in two variables.                                                                                                                                                             |
| Reasoning with<br>Equations and<br>Inequalities | Solve systems of equations                                                                   | HS.A-REI.C.8   | (+) Represent a system of linear equations as a single matrix equation in a vector variable.                                                                                                                                                                                                                                                                               |  | Depending upon the values students are working to determine<br>for robot construction and programming, they may represent a<br>system of linear equations as a single matrix equation.                                                                                                                                                                                             |
| Reasoning with<br>Equations and<br>Inequalities | Solve systems of equations                                                                   | HS.A-REI.C.9   | (+) Find the inverse of a matrix if it exists and use it to solve<br>systems of linear equations (using technology for matrices of<br>dimension 3 × 3 or greater).                                                                                                                                                                                                         |  | Depending upon the values students are working to determine<br>for robot construction and programming, they may find the<br>inverse of a matrix if it exists and use it to solve systems of linear<br>equations.                                                                                                                                                                   |
| Reasoning with<br>Equations and<br>Inequalities | Represent and solve<br>equations and<br>inequalities<br>graphically                          | HS.A-REI.D.10  | Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).                                                                                                                                                                                                  |  | As students work to determine values to use in robot construction<br>and programming, they will understand that the graph of an<br>equation in two variables is the set of all its solutions plotted in<br>the coordinate plane.                                                                                                                                                   |

| Reasoning with<br>Equations and<br>Inequalities | Represent and solve<br>equations and<br>inequalities<br>graphically             | HS.A-REI.D.11 | Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$ ; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. | Depending upon the values students are working to determine<br>for robot construction and programming, they may explain why<br>the x-coordinates of the points where the graphs of the equations<br>y = f(x) and $y = g(x)$ intersect are the solutions of the equation<br>f(x) = g(x).    |
|-------------------------------------------------|---------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reasoning with<br>Equations and<br>Inequalities | Represent and solve<br>equations and<br>inequalities<br>graphically             | HS.A-REI.D.12 | Graph the solutions to a linear inequality in two variables as a halfplane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.                                                                                                                                                                      | Depending upon the values students are working to determine<br>for robot construction and programming, they may graph the<br>solutions to a linear inequality in two variables as a halfplane.                                                                                             |
| Interpreting<br>Functions                       | Understand the<br>concept of a function<br>and use function<br>notation         | HS.F-IF.A.1   | Understand that a function from one set (called the domain) to<br>another set (called the range) assigns to each element of the<br>domain exactly one element of the range. If f is a function and x<br>is an element of its domain, then (fx) denotes the output of f<br>corresponding to the input x. The graph of f is the graph of the<br>equation $y = f(x)$ .                                                                               | As students work to determine values to use in robot construction<br>and programming, they will understand a function assigns to<br>each element of the domain exactly one element of the range.<br>Through programming, students will learn that unique inputs lead<br>to unique outputs. |
| Interpreting<br>Functions                       | Understand the<br>concept of a function<br>and use function<br>notation         | HS.F-IF.A.2   | Use function notation, evaluate functions for inputs in their<br>domains, and interpret statements that use function notation in<br>terms of a context.                                                                                                                                                                                                                                                                                           | As students work to determine values to use in robot construction<br>and programming, they will use function notation, evaluate<br>functions for inputs in their domains, and interpret statements<br>that use function notation in terms of a context.                                    |
| Interpreting<br>Functions                       | Understand the<br>concept of a function<br>and use function<br>notation         | HS.F-IF.A.3   | Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$ , $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$ .                                                                                                                                                                                                       | Depending upon the values students are working to determine<br>for robot construction and programming, they may recognize that<br>sequences are functions, sometimes defined recursively.                                                                                                  |
| Interpreting<br>Functions                       | Interpret functions<br>that arise in<br>applications in terms<br>of the context | HS.F-IF.B.4   | For a function that models a relationship between two<br>quantities, interpret key features of graphs and tables in terms<br>of the quantities, and sketch graphs showing key features given<br>a verbal description of the relationship. Key features include:<br>intercepts; intervals where the function is increasing,<br>decreasing, positive, or negative; relative maximums and<br>minimums; symmetries; end behavior; and periodicity.    | As students work to determine values to use in robot construction<br>and programming, they will use functions to model relationships<br>between two quantities.                                                                                                                            |
| Interpreting<br>Functions                       | Interpret functions<br>that arise in<br>applications in terms<br>of the context | HS.F-IF.B.5   | Relate the domain of a function to its graph and, where<br>applicable, to the quantitative relationship it describes. For<br>example, if the function h(n) gives the number of person-hours<br>it takes to assemble n engines in a<br>factory, then the positive integers would be an appropriate<br>domain for the function.                                                                                                                     | As students work to determine values to use in robot construction<br>and programming, they will relate the domain of a function to its<br>graph.                                                                                                                                           |
| Interpreting<br>Functions                       | Interpret functions<br>that arise in<br>applications in terms<br>of the context | HS.F-IF.B.6   | Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.                                                                                                                                                                                                                                                                      | As students work to determine values to use in robot construction<br>and programming (e.g. robot speed), they will calculate and<br>interpret the average rate of change of a function.                                                                                                    |
| Interpreting<br>Functions                       | Analyze functions<br>using different<br>representations                         | HS.F-IF.C.7.A | Graph functions expressed symbolically and show key features<br>of the graph, by hand in simple cases and using technology for<br>more complicated cases.<br>a. Graph linear and quadratic functions and show intercepts,<br>maxima, and minima.                                                                                                                                                                                                  | As students work to determine values to use in robot construction<br>and programming, they will graph linear and quadratic functions<br>and show intercepts, maxima, and minima.                                                                                                           |
| Interpreting<br>Functions                       | Analyze functions<br>using different<br>representations                         | HS.F-IF.C.7.B | Graph functions expressed symbolically and show key features<br>of the graph, by hand in simple cases and using technology for<br>more complicated cases.<br>b. Graph square root, cube root, and piecewise-defined<br>functions, including step functions and absolute value<br>functions.                                                                                                                                                       | As students work to determine values to use in robot<br>construction, match play and predictive scoring opportunities,<br>and programming, they will graph square root, cube root, and<br>piecewise-defined functions, including step functions and<br>absolute value functions.           |

| Interpreting<br>Functions | Analyze functions<br>using different<br>representations                     | HS.F-IF.C.7.C | Graph functions expressed symbolically and show key features<br>of the graph, by hand in simple cases and using technology for<br>more complicated cases.<br>c. Graph polynomial functions, identifying zeros when suitable<br>factorizations are available, and showing end behavior.                                                                                                                                                             | As students work to determine values to use in robot<br>construction, understand predictive match scores, and<br>programming, they will graph polynomial functions, identifying<br>zeros when suitable factorizations are available, and show end<br>behavior. |
|---------------------------|-----------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interpreting<br>Functions | Analyze functions<br>using different<br>representations                     | HS.F-IF.C.7.D | Graph functions expressed symbolically and show key features<br>of the graph, by hand in simple cases and using technology for<br>more complicated cases.<br>d. (+) Graph rational functions, identifying zeros and<br>asymptotes when suitable factorizations are available, and<br>showing end behavior.                                                                                                                                         | Depending upon the values students are working to determine<br>for robot construction and programming, they may graph rational<br>functions.                                                                                                                   |
| Interpreting<br>Functions | Analyze functions<br>using different<br>representations                     | HS.F-IF.C.7.E | Graph functions expressed symbolically and show key features<br>of the graph, by hand in simple cases and using technology for<br>more complicated cases.<br>e. Graph exponential and logarithmic functions, showing<br>intercepts and end behavior, and trigonometric functions,<br>showing period, midline, and amplitude.                                                                                                                       | Depending upon the values students are working to determine<br>for robot construction and programming, they may graph<br>exponential, logarithmic, and trigonometrict functions.                                                                               |
| Interpreting<br>Functions | Analyze functions<br>using different<br>representations                     | HS.F-IF.C.8.A | <ul><li>Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.</li><li>a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.</li></ul>                                                                                           | Depending upon the values students are working to determine<br>for robot construction and programming, they may use the<br>process of factoring and completing the square.                                                                                     |
| Interpreting<br>Functions | Analyze functions<br>using different<br>representations                     | HS.F-IF.C.8.B | Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.<br>b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^{l}$ , $y = (0.97)^{l}$ , $y = (1.01)^{12l}$ , $y = (1.2)^{l/10}$ , and classify them as representing exponential growth or decay. | As students work to determine values to use in robot construction<br>and programming, they will use the properties of exponents to<br>interpret expressions for exponential functions.                                                                         |
| Interpreting<br>Functions | Analyze functions<br>using different<br>representations                     | HS.F-IF.C.9   | Compare properties of two functions each represented in a<br>different way (algebraically, graphically, numerically in tables, or<br>by verbal descriptions). For example, given a graph of one<br>quadratic function and an algebraic expression for another,<br>say which has the larger maximum.                                                                                                                                                | Depending upon the values students are working to determine<br>for robot construction and programming, they may compare<br>properties of two functions each represented in a different way.                                                                    |
| Building Functions        | Build a function that<br>models a relationship<br>between two<br>quantities | HS.F-BF.A.1.A | Write a function that describes a relationship between two<br>quantities.<br>a. Determine an explicit expression, a recursive process, or<br>steps for calculation from a context.                                                                                                                                                                                                                                                                 | As students work to determine values to use in robot construction<br>and programming, they will determine an explicit expression, a<br>recursive process, or steps for calculation from a context.                                                             |
| Building Functions        | Build a function that<br>models a relationship<br>between two<br>quantities | HS.F-BF.A.1.B | Write a function that describes a relationship between two quantities.<br>b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.                                                                                                                            | As students work to determine values to use in robot construction<br>and programming, they will combine standard function types<br>using arithmetic operations.                                                                                                |

|                                                 |                                                                                |                  | Write a function that describes a relationship between two<br>quantities.                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                |
|-------------------------------------------------|--------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building Functions                              | Build a function that<br>models a relationship<br>between two<br>quantities    | HS.F-BF.A.1.C    | c. (+) Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.                                                                                                                            | As students work to determine values to use in robot construction<br>and programming, they may need to compose functions as is<br>necessary.                                                                                                                   |
| Building Functions                              | Build a function that<br>models a relationship<br>between two<br>quantities    | HS.F-BF.A.2      | Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.                                                                                                                                                                                                                                                   | As students work to determine values to use in robot construction<br>and programming, they may write arithmetic and geometric<br>sequences both recursively and with an explicit formula.                                                                      |
| Building Functions                              | Build new functions<br>from existing<br>functions                              | HS.F-BF.B.3      | Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$ , $k f(x)$ , $f(ox)$ , and $f(x + k)$ for specific values of $k$ (both positive and negative); find the value of $k$ given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. | Not Applicable                                                                                                                                                                                                                                                 |
| Building Functions                              | Build new functions<br>from existing<br>functions                              | HS.F-BF.B.4.A    | Find inverse functions.<br>a. Solve an equation of the form $f(x) = c$ for a simple function f<br>that has an inverse and write an expression for the inverse. For                                                                                                                                                                                                                                           | Depending upon the values students are working to determine<br>for robot construction and programming, they may solve an<br>equation f and write an expression for the inverse                                                                                 |
|                                                 | Tunctions                                                                      |                  | example, $f(x) = 2x^3$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$ .                                                                                                                                                                                                                                                                                                                                              | equation f and write an expression for the inverse.                                                                                                                                                                                                            |
| Building Functions                              | Build new functions<br>from existing                                           | HS.F-BF.B.4.B    | Find inverse functions.                                                                                                                                                                                                                                                                                                                                                                                      | Not Applicable                                                                                                                                                                                                                                                 |
| functions                                       |                                                                                | 110.1 -01 .0.4.0 | b. (+) Verify by composition that one function is the inverse of another.                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                |
|                                                 | Build new functions<br>from existing<br>functions                              | HS.F-BF.B.4.C    | Find inverse functions.                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |
| Building Functions                              |                                                                                |                  | c. (+) Read values of an inverse function from a graph or a<br>table, given that the function has an inverse.                                                                                                                                                                                                                                                                                                | Not Applicable                                                                                                                                                                                                                                                 |
|                                                 | Build new functions                                                            |                  | Find inverse functions.                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |
| Building Functions                              | from existing<br>functions                                                     | HS.F-BF.B.4.D    | <ul> <li>d. (+) Produce an invertible function from a non-invertible<br/>function by restricting the domain.</li> </ul>                                                                                                                                                                                                                                                                                      | Not Applicable                                                                                                                                                                                                                                                 |
| Building Functions                              | Build new functions<br>from existing<br>functions                              | HS.F-BF.B.5      | (+) Understand the inverse relationship between exponents and<br>logarithms and use this relationship to solve problems involving<br>logarithms and exponents.                                                                                                                                                                                                                                               | Depending upon the values students are working to determine<br>for robot construction and programming, they may understand<br>the inverse relationship between exponents and logarithms and<br>use this relationship to solve problems.                        |
| Lizzan Overdentia                               | Construct and                                                                  |                  | Distinguish between situations that can be modeled with linear functions and with exponential functions.                                                                                                                                                                                                                                                                                                     | Depending upon the values students are working to determine                                                                                                                                                                                                    |
| Linear, Quadratic,<br>and Exponential<br>Models | compare linear,<br>quadratic, and<br>exponential models<br>and solve problems  | HS.F-LE.A.1.A    | a. Prove that linear functions grow by equal differences over<br>equal intervals, and that exponential functions grow by equal<br>factors over equal intervals.                                                                                                                                                                                                                                              | for robot construction and programming, they may prove that<br>linear functions grow by equal differences over equal intervals,<br>and that exponential functions grow by equal factors over equal<br>intervals.                                               |
| Linear, Quadratic,                              | Construct and<br>compare linear,                                               |                  | Distinguish between situations that can be modeled with linear<br>functions and with exponential functions.                                                                                                                                                                                                                                                                                                  | As students work to determine values to use in robot construction                                                                                                                                                                                              |
| and Exponential<br>Models                       | quadratic, and<br>exponential models<br>and solve problems                     | HS.F-LE.A.1.B    | <ul> <li>Recognize situations in which one quantity changes at a<br/>constant rate per unit interval relative to another.</li> </ul>                                                                                                                                                                                                                                                                         | and programming, they will recognize situations in which one<br>quantity changes at a constant rate per unit interval relative to<br>another.                                                                                                                  |
| Linear, Quadratic,                              | Construct and<br>compare linear,                                               |                  | Distinguish between situations that can be modeled with linear<br>functions and with exponential functions.                                                                                                                                                                                                                                                                                                  | As students work to determine values to use in robot construction                                                                                                                                                                                              |
| and Exponential<br>Models                       | quadratic, and<br>exponential models<br>and solve problems                     | HS.F-LE.A.1.C    | <ul> <li>c. Recognize situations in which a quantity grows or decays by<br/>a constant percent rate per unit interval relative to another.</li> </ul>                                                                                                                                                                                                                                                        | and programming, they will recognize situations in which a<br>quantity grows or decays by a constant percent rate per unit<br>interval relative to another.                                                                                                    |
| Linear, Quadratic,<br>and Exponential<br>Models | compare linear,<br>quadratic, and<br>exponential models<br>ເວດໂຣດປິເຊ ລາດປະເທດ | HS.F-LE.A.2      | Construct linear and exponential functions, including arithmetic<br>and geometric sequences, given a graph, a description of a<br>relationship, or two input-output pairs (include reading these<br>from a table).                                                                                                                                                                                           | As students work to determine values to use in robot construction<br>and programming, they will construct linear and exponential<br>functions.<br>Depending upon the values students are working to determine                                                  |
| Linear, Quadratic,<br>and Exponential<br>Models | compare linear,<br>quadratic, and<br>exponential models                        | HS.F-LE.A.3      | Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.                                                                                                                                                                                                                     | bepending upon intervalues students are writing to determine<br>for robot construction and programming, they may observe using<br>graphs and tables that a quantity increasing exponentially<br>eventually exceeds a quantity increasing linearly or quadratic |

| Linear, Quadratic,<br>and Exponential<br>Models | Construct and<br>compare linear,<br>quadratic, and<br>exponential models          | HS.F-LE.A.4 | For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.                                                                                                                                                                    | Depending upon the values students are working to determine for robot construction and programming, they may express as a logarithm the solution to $ab^{ct} = d$ .                                                                                                                                                                                              |
|-------------------------------------------------|-----------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear, Quadratic,<br>and Exponential<br>Models | Interpret expressions<br>for functions in terms<br>of the situation they<br>model | HS.F-LE.B.5 | Interpret the parameters in a linear or exponential function in terms of a context.                                                                                                                                                                                                                                                                   | As students work to determine values to use in robot construction<br>and programming, they will interpret the parameters in a linear or<br>exponential function in terms of a context.                                                                                                                                                                           |
| Trigonometric<br>Functions                      | Extend the domain of<br>trigonometric<br>functions using the<br>unit circle       | HS.A-TF.A.1 | Understand radian measure of an angle as the length of the arc<br>on the unit circle subtended by the angle.                                                                                                                                                                                                                                          | As students work to determine values to use in robot construction<br>and programming, they will understand radian measure of an<br>angle as the length of the arc on the unit circle subtended by the<br>angle, specifically in relation to robot movement and turning.                                                                                          |
| Trigonometric<br>Functions                      | Extend the domain of<br>trigonometric<br>functions using the<br>unit circle       | HS.A-TF.A.2 | Explain how the unit circle in the coordinate plane enables the<br>extension of trigonometric functions to all real numbers,<br>interpreted as radian measures of angles traversed<br>counterclockwise around the unit circle.                                                                                                                        | Depending upon the values students are working to determine<br>for robot construction and programming, they may explain how<br>the unit circle in the coordinate plane enables the extension of<br>trigonometric functions to all real numbers.                                                                                                                  |
| Trigonometric<br>Functions                      | Extend the domain of<br>trigonometric<br>functions using the<br>unit circle       | HS.A-TF.A.3 | (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$ , $\pi/4$ and $\pi/6$ , and use the unit circle to express the values of sine, cosine, and tangent for $\pi$ -x, $\pi$ +x, and $2\pi$ -x in terms of their values for x, where x is any real number.                                             | Depending upon the values students are working to determine for robot construction and programming, they may use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$ , $\pi/4$ and $\pi/6$ .                                                                                                                            |
| Trigonometric<br>Functions                      | Extend the domain of<br>trigonometric<br>functions using the<br>unit circle       | HS.A-TF.A.4 | (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.                                                                                                                                                                                                                                                | Depending upon the values students are working to determine<br>for robot construction and programming, they may use the unit<br>circle to explain symmetry and periodicity of trigonometric<br>functions.                                                                                                                                                        |
| Trigonometric<br>Functions                      | Model periodic<br>phenomena with<br>trigonometric<br>functions                    | HS.A-TF.B.5 | Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.                                                                                                                                                                                                                                          | Depending upon the values students are working to determine<br>for robot construction, programming or interacting with<br>challenges, they will use trigonometric functions to model<br>periodic phenomena.                                                                                                                                                      |
| Trigonometric<br>Functions                      | Model periodic<br>phenomena with<br>trigonometric<br>functions                    | HS.A-TF.B.6 | (+) Understand that restricting a trigonometric function to a<br>domain on which it is always increasing or always decreasing<br>allows its inverse to be constructed.                                                                                                                                                                                | Depending upon the values students are working to determine<br>for robot construction and programming, they may restrict<br>trigonometric functions to one domain allowing inverses to be<br>constructed.                                                                                                                                                        |
| Trigonometric<br>Functions                      | Model periodic<br>phenomena with<br>trigonometric<br>functions                    | HS.A-TF.B.7 | (+) Use inverse functions to solve trigonometric equations that<br>arise in modeling contexts; evaluate the solutions using<br>technology, and interpret them in terms of the context                                                                                                                                                                 | Depending upon the values students are working to determine<br>for robot construction and programming, they may use inverse<br>functions to solve trigonometric equations.                                                                                                                                                                                       |
| Trigonometric<br>Functions                      | Prove and apply<br>trigonometric<br>identities                                    | HS.A-TF.C.8 | Prove the Pythagorean identity sin <sup>2</sup> ( $\theta$ ) + cos <sup>2</sup> ( $\theta$ ) = 1 and use it to find sin( $\theta$ ), cos( $\theta$ ), or tan( $\theta$ ) given sin( $\theta$ ), cos( $\theta$ ), or tan( $\theta$ ) and the quadrant of the angle.                                                                                    | Depending upon the values students are working to determine<br>for robot construction and programming, they may prove the<br>Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to solve<br>problems.                                                                                                                                         |
| Trigonometric<br>Functions                      | Prove and apply<br>trigonometric<br>identities                                    | HS.A-TF.C.9 | (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.                                                                                                                                                                                                                                         | Depending upon the values students are working to determine<br>for robot construction and programming, they may prove the<br>addition and subtraction formulas for sine, cosine, and tangent<br>and use them to solve problems.                                                                                                                                  |
| Congruence                                      | Experiment with<br>transformations in the<br>plane                                | HS.G-CO.A.1 | Know precise definitions of angle, circle, perpendicular line,<br>parallel line, and line segment, based on the undefined notions<br>of point, line, distance along a line, and distance around a<br>circular arc.                                                                                                                                    | As students work to program their robot to function<br>autonomously, they will make use of specific geometric<br>definitions. If teams use CAD design and/or 3D printing, they will<br>need to know characteristics of many geometric figures.                                                                                                                   |
| Congruence                                      | Experiment with<br>transformations in the<br>plane                                | HS.G-CO.A.2 | Represent transformations in the plane using, e.g.,<br>transparencies and geometry software; describe<br>transformations as functions that take points in the plane as<br>inputs and give other points as outputs. Compare<br>transformations that preserve distance and angle to those that<br>do not (e.g., translation versus horizontal stretch). | As students work to design, construct, and program their robot to<br>function autonomously, they will make use of transformations in<br>a plane to identify locations or placement of parts. If teams use<br>CAD design and/or 3D printing, they will need to apply properties<br>of transformations.                                                            |
| Congruence                                      | Experiment with<br>transformations in the<br>plane                                | HS.G-CO.A.3 | Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.                                                                                                                                                                                                                    | As students work to design, construct, and program their robot to<br>function autonomously, they will make use of reflections and<br>rotations of various shapes to outline the look of the robot,<br>placement of parts, and approaches to navigation. If teams use<br>CAD design and/or 3D printing, they will need to apply properties<br>of transformations. |

| Congruence                     | Experiment with transformations in the plane          | HS.G-CO.A.4    | Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.                                                                                                                                                                                                                                                                                                            | As students work to<br>function autonomou<br>rotations of various<br>placement of parts,<br>CAD design and/or<br>of transformations. |
|--------------------------------|-------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Congruence                     | Experiment with transformations in the plane          | HS.G-CO.A.5    | Given a geometric figure and a rotation, reflection, or<br>translation, draw the transformed figure using, e.g., graph<br>paper, tracing paper, or geometry software. Specify a<br>sequence of transformations that will carry a given figure onto<br>another.                                                                                                                                                                                                  | As students work to<br>function autonomou<br>rotations of various<br>placement of parts,<br>CAD design and/or<br>of transformations. |
| Congruence                     | Understand<br>congruence in terms<br>of rigid motions | HS.G-CO.B.6    | Use geometric descriptions of rigid motions to transform figures<br>and to predict the effect of a given rigid motion on a given<br>figure; given two figures, use the definition of congruence in<br>terms of rigid motions<br>to decide if they are congruent.                                                                                                                                                                                                | As students work to<br>function autonomou<br>rotations of various<br>placement of parts,<br>CAD design and/or<br>congruence in terms |
| Congruence                     | Understand<br>congruence in terms<br>of rigid motions | HS.G-CO.B.7    | Use the definition of congruence in terms of rigid motions to<br>show that two triangles are congruent if and only if<br>corresponding pairs of sides and corresponding pairs of angles<br>are congruent.                                                                                                                                                                                                                                                       | Depending upon the<br>may have the oppor<br>concept of congruer<br>if and only if corresp<br>pairs of angles are o                   |
| Congruence                     | Understand<br>congruence in terms<br>of rigid motions | HS.G-CO.B.8    | Explain how the criteria for triangle congruence (ASA, SAS,<br>and SSS) follow from the definition of congruence in terms of<br>rigid motions.                                                                                                                                                                                                                                                                                                                  | Depending upon the<br>may have the oppor<br>how the criteria for t<br>of congruence in ter                                           |
| Congruence                     | Prove geometric theorems                              | HS.G-CO.C.9    | Prove theorems about lines and angles. Theorems include:<br>vertical angles are congruent; when a transversal crosses<br>parallel lines, alternate interior angles are congruent and<br>corresponding angles are congruent; points on a perpendicular<br>bisector of a line segment are exactly those equidistant from<br>the segment's endpoints.                                                                                                              | Not Applicable                                                                                                                       |
| Congruence                     | Prove geometric theorems                              | HS.G-CO.C.10   | Prove theorems about triangles. Theorems include: measures<br>of interior angles of a triangle sum to 180°; base angles of<br>isosceles triangles are congruent; the segment joining<br>midpoints of two sides of a triangle is<br>parallel to the third side and half the length; the medians of a<br>triangle meet at a point.                                                                                                                                | Not Applicable                                                                                                                       |
| Congruence                     | Prove geometric theorems                              | HS.G-CO.C.11   | Prove theorems about parallelograms. Theorems include:<br>opposite sides are congruent, opposite angles are congruent,<br>the diagonals of a parallelogram bisect each other, and<br>conversely, rectangles are parallelograms with congruent<br>diagonals.                                                                                                                                                                                                     | Not Applicable                                                                                                                       |
| Congruence                     | Make geometric<br>constructions                       | HS.G-CO.D.12   | Make formal geometric constructions with a variety of tools and<br>methods (compass and straightedge, string, reflective devices,<br>paper folding, dynamic geometric software, etc.). Copying a<br>segment; copying an angle; bisecting a segment; bisecting an<br>angle; constructing perpendicular lines, including the<br>perpendicular bisector of a line segment; and constructing a<br>line parallel to a given line through a point not on the<br>line. | As students work to<br>function autonomou<br>with a variety of tool<br>and/or 3D printing, t<br>figures.                             |
| Congruence                     | Make geometric constructions                          | HS.G-CO.D.13   | Construct an equilateral triangle, a square, and a regular<br>hexagon inscribed in a circle.                                                                                                                                                                                                                                                                                                                                                                    | Depending upon the<br>or programming for<br>an equilateral triang<br>in a circle                                                     |
| Similarity, Right              | Understand similarity                                 |                | Verify experimentally the properties of dilations given by a<br>center and a scale factor:                                                                                                                                                                                                                                                                                                                                                                      | Depending upon the                                                                                                                   |
| Triangles, and<br>Trigonometry | in terms of similarity<br>transformations             | HS.G-SRT.A.1.A | a. A dilation takes a line not passing through the center of the<br>dilation to a parallel line, and leaves a line passing through the<br>center unchanged.                                                                                                                                                                                                                                                                                                     | or programming for<br>experimentally the p<br>scale factor.                                                                          |
|                                |                                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                      |

As students work to design, construct, and program their robot to function autonomously, they will make use of reflections and rotations of various shapes to outline the look of the robot, placement of parts, and approaches to navigation. If teams use CAD design and/or 3D printing, they will need to apply properties of transformations.

As students work to design, construct, and program their robot to function autonomously, they will make use of reflections and rotations of various shapes to outline the look of the robot, placement of parts, and approaches to navigation. If teams use CAD design and/or 3D printing, they will need to apply properties of transformations.

As students work to design, construct, and program their robot to function autonomously, they will make use of reflections and rotations of various shapes to outline the look of the robot, placement of parts, and approaches to navigation. If teams use CAD design and/or 3D printing, they will need to understand congruence in terms of rigid motion.

Depending upon the expectations of the coach/mentor, students may have the opportunity when working with triangles to use the concept of congruence to prove that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. Depending upon the expectations of the coach/mentor, students

may have the opportunity when working with triangles to explain how the criteria for triangle congruence follow from the definition of congruence in terms of rigid motions.

As students work to design, construct, and program their robot to function autonomously, they may make geometric constructions with a variety of tools and methods. If teams use CAD design and/or 3D printing, they will need to construct different geometric figures.

Depending upon the how the students are fabricating robot parts or programming for autonomous navigation, they may construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle

Depending upon the how the students are fabricating robot parts or programming for autonomous navigation, they may verify experimentally the properties of dilations given by a center and a scale factor.

| Similarity, Right<br>Triangles, and<br>Trigonometry  | Understand similarity<br>in terms of similarity<br>transformations               | HS.G-SRT.A1.B | Verify experimentally the properties of dilations given by a center and a scale factor:<br>b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.                                                                                                                                                | Depending upon the how the students are fabricating robot parts<br>or programming for autonomous navigation, they may verify<br>experimentally the properties of dilations given by a center and a<br>scale factor.         |
|------------------------------------------------------|----------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Similarity, Right<br>Triangles, and<br>Trigonometry  | Understand similarity<br>in terms of similarity<br>transformations               | HS.G-SRT.A.2  | Given two figures, use the definition of similarity in terms of<br>similarity transformations to decide if they are similar; explain<br>using similarity transformations the meaning of similarity for<br>triangles as the equality of all corresponding pairs of angles<br>and the proportionality of all corresponding pairs of sides. | As students work to design, construct, and program their robot to<br>function autonomously, they will compare the similarity of two<br>figures based on the definition as well as a transformation                          |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | Understand similarity<br>in terms of similarity<br>transformations               | HS.G-SRT.A.3  | Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.                                                                                                                                                                                                                          | Not Applicable                                                                                                                                                                                                              |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | Prove theorems involving similarity                                              | HS.G-SRT.B.4  | Prove theorems about triangles. Theorems include: a line<br>parallel to one side of a triangle divides the other two<br>proportionally, and conversely; the Pythagorean Theorem<br>proved using triangle similarity.                                                                                                                     | Not Applicable                                                                                                                                                                                                              |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | Prove theorems involving similarity                                              | HS.G-SRT.B.5  | Use congruence and similarity criteria for triangles to solve<br>problems and to prove relationships in geometric figures.                                                                                                                                                                                                               | As students work to design, construct, and program their robot to<br>function autonomously, they will use congruence and similarity<br>criteria of triangles to establish the relationship between two<br>shapes.           |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | ratios and solve<br>problems involving<br>right                                  | HS.G-SRT.C.6  | Understand that by similarity, side ratios in right triangles are<br>properties of the angles in the triangle, leading to definitions of<br>trigonometric ratios for acute angles.                                                                                                                                                       | As students work to design, construct, and program their robot to<br>function autonomously, they may use the fact that side ratios in<br>right triangles are properties of the angles in the triangle to solve<br>problems. |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | ratios and solve<br>problems involving<br>right                                  | HS.G-SRT.C.7  | Explain and use the relationship between the sine and cosine of complementary angles.                                                                                                                                                                                                                                                    | As students work to design, construct, and program their robot to<br>function autonomously, they may use the relationship between<br>the sine and cosine of complementary angles to solve problems.                         |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | ratios and solve<br>problems involving<br>right                                  | HS.G-SRT.C.8  | Use trigonometric ratios and the Pythagorean Theorem to solve<br>right triangles in applied problems.                                                                                                                                                                                                                                    | As students work to design, construct, and program their robot to<br>function autonomously, they will use trigonometric ratios and the<br>Pythagorean Theorem to solve problems.                                            |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | Apply trigonometry to general triangles                                          | HS.G-SRT.D.9  | (+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.                                                                                                                                                                                       | Not Applicable                                                                                                                                                                                                              |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | Apply trigonometry to general triangles                                          | HS.G-SRT.D.10 | (+) Prove the Laws of Sines and Cosines and use them to solve problems.                                                                                                                                                                                                                                                                  | Depending upon the expectations of the coach/mentor, students<br>may use the Laws of Sines and Cosines to solve problems.                                                                                                   |
| Similarity, Right<br>Triangles, and<br>Trigonometry  | Apply trigonometry to general triangles                                          | HS.G-SRT.D.11 | (+) Understand and apply the Law of Sines and the Law of<br>Cosines to find unknown measurements in right and non-right<br>triangles (e.g., surveying problems, resultant forces).                                                                                                                                                       | As students work to design, construct, and program their robot to<br>function autonomously, they will apply the Law of Sines and the<br>Law of Cosines to solve problems.                                                   |
| Circles                                              | Understand and apply theorems about circles                                      | HS.G-C.A.1    | Prove that all circles are similar.                                                                                                                                                                                                                                                                                                      | Not Applicable                                                                                                                                                                                                              |
| Circles                                              | Understand and apply theorems about circles                                      | HS.G-C.A.2    | Identify and describe relationships among inscribed angles,<br>radii, and chords. Include the relationship between central,<br>inscribed, and circumscribed angles; inscribed angles on a<br>diameter are right angles; the radius of a circle is perpendicular<br>to the tangent where the radius intersects the circle.                | Depending upon the expectations of the coach/mentor, students<br>may identify and describe relationships among inscribed angles,<br>radii, and chords and use these facts to solve problems.                                |
| Circles                                              | Understand and apply<br>theorems about<br>circles                                | HS.G-C.A.3    | Construct the inscribed and circumscribed circles of a triangle,<br>and prove properties of angles for a quadrilateral inscribed in a<br>circle.                                                                                                                                                                                         | Depending upon the expectations of the coach/mentor, students<br>may construct the inscribed and circumscribed circles of a<br>triangle and quadrilateral.                                                                  |
| Circles                                              | theorems about                                                                   | HS.G-C.A.4    | (+) Construct a tangent line from a point outside a given circle to the circle.                                                                                                                                                                                                                                                          | Depending upon the expectations of the coach/mentor, students may construct a tangent line and use it to solve problems.                                                                                                    |
| Circles                                              | Find arc lengths and<br>areas of sectors of<br>circles                           | HS.G-C.B.5    | Derive using similarity the fact that the length of the arc<br>intercepted by an angle is proportional to the radius, and define<br>the radian measure of the angle as the constant of<br>proportionality; derive the formula for the area of a sector.                                                                                  | Depending upon the expectations of the coach/mentor, students<br>may derive using similarity the fact that the length of the arc<br>intercepted by an angle is proportional to the radius and use it to<br>solve problems.  |
| Expressing<br>Geometric Properties<br>with Equations | Translate between the geometric description and the equation for a conic section | HS.G-GPE.A.1  | Derive the equation of a circle of given center and radius using<br>the Pythagorean Theorem; complete the square to find the<br>center and radius of a circle given by an equation.                                                                                                                                                      | Depending upon the expectations of the coach/mentor, students<br>may derive the equation of a circle of given center and radius<br>using the Pythagorean Theorem.                                                           |

| Expressing<br>Geometric Properties<br>with Equations | Translate between the geometric description and the equation for a conic section               | HS.G-GPE.A.2 | Derive the equation of a parabola given a focus and directrix.                                                                                                                                                                                                                                     | Not Applicable                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expressing<br>Geometric Properties<br>with Equations | Translate between the                                                                          | HS.G-GPE.A.3 | (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.                                                                                                                                              | Not Applicable                                                                                                                                                                                                                                                                                                                                                                                      |
| Expressing<br>Geometric Properties<br>with Equations | Use coordinates to<br>prove simple<br>geometric theorems<br>algebraically                      | HS.G-GPE.B.4 | Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the  | As students work to design, construct, and program their robot to<br>function autonomously, they may use coordinates to prove<br>simple geometric theorems algebraically.                                                                                                                                                                                                                           |
| Expressing<br>Geometric Properties<br>with Equations | Use coordinates to<br>prove simple<br>geometric theorems<br>algebraically                      | HS.G-GPE.B.5 | Prove the slope criteria for parallel and perpendicular lines and<br>use them to solve geometric problems (e.g., find the equation<br>of a line parallel or perpendicular to a given line that passes<br>through a given point).                                                                   | As students work to design, construct, and program their robot to<br>function autonomously, they will prove the slope criteria for<br>parallel and perpendicular lines and use them to solve geometric<br>problems                                                                                                                                                                                  |
| with Equations                                       | algebraically<br>Use coordinates to                                                            | HS.G-GPE.B.6 | Find the point on a directed line segment between two given points that partitions the segment in a given ratio.                                                                                                                                                                                   | As students work to design, construct, and program their robot to<br>function autonomously, they will find the point on a directed line<br>segment between two given points that partitions the segment in<br>a given ratio.<br>As students work to design, construct, and program their robot to                                                                                                   |
| Expressing<br>Geometric Properties<br>with Equations | prove simple<br>geometric theorems<br>algebraically                                            | HS.G-GPE.B.7 | Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.                                                                                                                                                                         | function autonomously, they will use coordinates to compute<br>perimeters of polygons and areas of triangles and rectangles and<br>solve problems.                                                                                                                                                                                                                                                  |
| Geometric<br>Measurement and<br>Dimension            | Explain volume<br>formulas and use<br>them to solve<br>problems                                | HS.G-GMD.A.1 | Give an informal argument for the formulas for the<br>circumference of a circle, area of a circle, volume of a cylinder,<br>pyramid, and cone. Use dissection arguments, Cavalieri's<br>principle, and informal limit arguments.                                                                   | Depending upon the expectations of the coach/mentor, students<br>may give an informal argument for the formulas associated with a<br>circle.                                                                                                                                                                                                                                                        |
| Geometric<br>Measurement and<br>Dimension            | formulas and use<br>them to solve                                                              | HS.G-GMD.A.2 | (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.                                                                                                                                                                     | Depending upon the expectations of the coach/mentor, students<br>may give an informal argument for Cavalieri's principle.                                                                                                                                                                                                                                                                           |
| Geometric<br>Measurement and<br>Dimension            | Explain volume<br>formulas and use<br>them to solve<br>problems                                | HS.G-GMD.A.3 | Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.                                                                                                                                                                                                                 | Depending upon the design of their robot and the challenges<br>encountered in the competition, students will have use volume<br>formulas for cylinders, pyramids, cones, and spheres to solve<br>problems.                                                                                                                                                                                          |
| Geometric<br>Measurement and<br>Dimension            | Visualize relationships<br>between two-<br>dimensional and three-<br>dimensional objects       | HS.G-GMD.B.4 | Identify the shapes of two-dimensional cross-sections of three-<br>dimensional objects, and identify three-dimensional objects<br>generated by rotations of two-dimensional objects.                                                                                                               | Depending upon the design of their robot and the challenges<br>encountered in the competition, students may have to use<br>conversions of two-dimensional objects to solve problems.                                                                                                                                                                                                                |
| Modeling with<br>Geometry                            | Apply geometric<br>concepts in modeling<br>situations                                          | HS.G-MG.A.1  | Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).                                                                                                                                                       | Depending upon the design of their robot and the challenges<br>encountered in the competition, students will use geometric<br>shapes, their measures, and their properties to describe objects.                                                                                                                                                                                                     |
| Modeling with<br>Geometry                            | Apply geometric<br>concepts in modeling<br>situations                                          | HS.G-MG.A.2  | Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).                                                                                                                                                                    | Depending upon the design of their robot and the challenges<br>encountered in the competition, students may Apply concepts of<br>density based on area and volume in modeling situations.                                                                                                                                                                                                           |
| Modeling with<br>Geometry                            | Apply geometric<br>concepts in modeling<br>situations                                          | HS.G-MG.A.3  | Apply geometric methods to solve design problems (e.g.,<br>designing an object or structure to satisfy physical constraints<br>or minimize cost; working with typographic grid systems based<br>on ratios).                                                                                        | As students work to design, construct, and program their robot to<br>function autonomously, they will apply geometric methods to<br>design problems.                                                                                                                                                                                                                                                |
| Interpreting<br>Categorical and<br>Quantitative Data | represent, and<br>interpret data on a<br>single count or                                       | HS.S-ID.A.1  | Represent data with plots on the real number line (dot plots, histograms, and box plots).                                                                                                                                                                                                          | As students work to design, construct, program their robot to<br>function autonomously, and select a partner team, they will<br>represent data with plots on the real number line                                                                                                                                                                                                                   |
| Interpreting<br>Categorical and<br>Quantitative Data | represent, and<br>interpret data on a<br>single count or                                       | HS.S-ID.A,2  | Use statistics appropriate to the shape of the data distribution<br>to compare center (median, mean) and spread (interquartile<br>range, standard deviation) of two or more different data sets.                                                                                                   | As students work to program their robot to function autonomously<br>and select a partner team, they will use statistics appropriate to<br>the shape of the data distribution                                                                                                                                                                                                                        |
| Interpreting<br>Categorical and<br>Quantitative Data | represent, and<br>interpret data on a<br>single count or                                       | HS.S-ID.A.3  | Interpret differences in shape, center, and spread in the context<br>of the data sets, accounting for possible effects of extreme<br>data points (outliers).                                                                                                                                       | As students work to program their robot to function autonomously<br>and select a partner team, they will interpret differences in<br>shape, center, and spread in the context of the data sets,<br>accounting for possible effects of extreme data point.                                                                                                                                           |
| Interpreting<br>Categorical and<br>Quantitative Data | Summarize,<br>represent, and<br>interpret data on a<br>single count or<br>measurement variable | HS.S-ID.A.4  | Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. | As students work to program their robot to function autonomously<br>and select a partner team, they may need to interpret differences<br>in shape, center, and spread in the context of the data sets,<br>accounting for possible effects of extreme data points, use the<br>mean and standard deviation of a data set to fit it to a normal<br>distribution and to estimate population percentages |

| Interpreting<br>Categorical and<br>Quantitative Data | Summarize,<br>represent, and<br>interpret data on two<br>categorical and<br>quantitative variables                                     | HS.S-ID.B.5   | Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.                                                                                             |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Interpreting<br>Categorical and<br>Quantitative Data | Summarize,<br>represent, and<br>interpret data on two<br>categorical and<br>quantitative variables                                     | HS.S-ID.B.6.A | Represent data on two quantitative variables on a scatter plot,<br>and describe how the variables are related<br>a. Fit a function to the data; use functions fitted to data to solve<br>problems in the context of the data. Use given functions or<br>choose a function suggested by the context. Emphasize linear,<br>quadratic, and exponential models. |  |
| Interpreting<br>Categorical and<br>Quantitative Data | Summarize,<br>represent, and<br>interpret data on two<br>categorical and<br>quantitative variables                                     | HS.S-ID.B.6.B | Represent data on two quantitative variables on a scatter plot,<br>and describe how the variables are related.<br>b. Informally assess the fit of a function by plotting and<br>analyzing residuals.                                                                                                                                                        |  |
| Interpreting<br>Categorical and<br>Quantitative Data | Summarize,<br>represent, and<br>interpret data on two<br>categorical and<br>quantitative variables                                     | HS.S-ID.B.6.C | Represent data on two quantitative variables on a scatter plot,<br>and describe how the variables are related.<br>c. Fit a linear function for a scatter plot that suggests a linear<br>association.                                                                                                                                                        |  |
| Interpreting<br>Categorical and<br>Quantitative Data | Interpret linear models                                                                                                                | HS.S-ID.C.7   | Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.                                                                                                                                                                                                                                        |  |
| Interpreting<br>Categorical and<br>Quantitative Data | Interpret linear models                                                                                                                | HS.S-ID.C.8   | Compute (using technology) and interpret the correlation coefficient of a linear fit.                                                                                                                                                                                                                                                                       |  |
| Interpreting<br>Categorical and<br>Quantitative Data | Interpret linear models                                                                                                                | HS.S-ID.C.9   | Distinguish between correlation and causation.                                                                                                                                                                                                                                                                                                              |  |
| Making Inferences<br>and Justifying<br>Conclusions   | Understand and<br>evaluate random<br>processes underlying<br>statistical experiments                                                   | HS.S-IC.A.1   | Understand statistics as a process for making inferences about population parameters based on a random sample from that population.                                                                                                                                                                                                                         |  |
| Making Inferences<br>and Justifying<br>Conclusions   | Understand and<br>evaluate random<br>processes underlying<br>statistical experiments                                                   | HS.S-IC.A.2   | Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?                                                                                     |  |
| Making Inferences<br>and Justifying<br>Conclusions   | Make inferences and<br>justify conclusions<br>from sample surveys,<br>experiments, and<br>observational studies<br>Make inferences and | HS.S-IC.B.3   | Recognize the purposes of and differences among sample<br>surveys, experiments, and observational studies; explain how<br>randomization relates to each.                                                                                                                                                                                                    |  |
| Making Inferences<br>and Justifying<br>Conclusions   | justify conclusions<br>from sample surveys,<br>experiments, and<br>observational studies<br>Make inferences and                        | HS.S-IC.B.4   | Use data from a sample survey to estimate a population mean<br>or proportion; develop a margin of error through the use of<br>simulation models for random sampling.                                                                                                                                                                                        |  |
| Making Inferences<br>and Justifying<br>Conclusions   | justify conclusions<br>from sample surveys,<br>experiments, and<br>observational studies                                               | HS.S-IC.B.5   | Use data from a randomized experiment to compare two<br>treatments; use simulations to decide if differences between<br>parameters are significant.                                                                                                                                                                                                         |  |
| Making Inferences<br>and Justifying<br>Conclusions   | Make inferences and<br>justify conclusions<br>from sample surveys,<br>experiments, and<br>observational studies                        | HS.S-IC.B.6   | Evaluate reports based on data.                                                                                                                                                                                                                                                                                                                             |  |

As students work to program their robot to function autonomously and select a partner team, they will summarize categorical data for two categories in two-way frequency tables and interpret relative frequencies. As students work to program their robot to function autonomously and select a partner team, they will fit a function to the data; use functions fitted to data to solve problems

As students work to program their robot to function autonomously and select a partner team, they will informally assess the fit of a function by plotting and analyzing residuals.

As students work to program their robot to function autonomously and select a partner team, they will informally assess the fit a linear function for a scatter plot that suggests a linear association.

As students work to program their robot to function autonomously and select a partner team, they will interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data

As students work to program their robot to function autonomously and select a partner team, they will compute and interpret the correlation coefficient of a linear fit.

As students work to program their robot to function autonomously and select a partner team, they will distinguish between correlation and causation.

As students work to program their robot to function autonomously and select a partner team, they will understand statistics as a process for making inferences about population parameters based on a random sample.

As students work to program their robot to function autonomously and select a partner team, they will decide if a specified model is consistent with results from a given data-generating process.

Depending upon coach/mentor expectations as students work to program their robot to function autonomously and select a partner team, they may recognize the purposes of and differences among sample surveys, experiments, and observational studies.

Depending upon how a team chooses to plan for fundraising or outreach activities, students may use data from a sample survey to estimate a population mean or proportion and develop a margin of error.

Depending upon how students go about testing their robot design, programming, and user operation, they may use data from a randomized experiment to compare different treatments.

As students work to program their robot to function autonomously, test their robot design, test their robot operation and select a partner team, they will evaluate reports based on data.

| Conditional<br>Probability and the<br>Rules of Probability | Understand<br>independence and<br>conditional probability<br>and use them to<br>interpret data                         | HS.S-CP.A.1 | Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").                                                                                                                                                                                                                                                                                                                                                                                                               | Depending upon the nature of the challenges in the competition,<br>and as students work to program their robot to function<br>autonomously and set-up their game strategy, they may work<br>with events as subsets of a sample (e.g., how many red rings are<br>added to the highest peg as opposed to blue rings?)                                                                                                                                           |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conditional<br>Probability and the<br>Rules of Probability | Understand<br>independence and<br>conditional probability<br>and use them to<br>interpret data                         | HS.S-CP.A.2 | Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.                                                                                                                                                                                                                                                                                                                                                                                                            | Depending upon the nature of the challenges in the competition,<br>and as students work to program their robot to function<br>autonomously and set-up their game strategy, they may need to<br>determine whether two events are independent (e.g., How many<br>red balls are added to the basket?, How many blue rings are<br>added to the highest peg?)                                                                                                      |
| Conditional<br>Probability and the<br>Rules of Probability | Understand<br>independence and<br>conditional probability<br>and use them to<br>interpret data                         | HS.S-CP.A.3 | Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.                                                                                                                                                                                                                                                                                                                              | Depending upon the nature of the challenges in the competition,<br>and as students work to program their robot to function<br>autonomously and set-up their game strategy, they may need to<br>use conditional probability to determine of two events are<br>independent (e.g., How many red balls are added to the basket?,<br>How many blue rings are added to the highest peg?)                                                                            |
| Conditional<br>Probability and the<br>Rules of Probability | Understand<br>independence and<br>conditional probability<br>and use them to<br>interpret data                         | HS.S-CP.A.4 | Construct and interpret two-way frequency tables of data when<br>two categories are associated with each object being classified.<br>Use the two-way table as a sample space to decide if events<br>are independent<br>and to approximate conditional probabilities. For example,<br>collect data from a random sample of students in your school<br>on their favorite subject among math, science, and English.<br>Estimate the probability that a randomly selected student from<br>your school will favor science given that the student is in tenth<br>grade. Do the same for other subjects and compare the results. | Depending upon the nature of the challenges in the competition,<br>and as students work to program their robot to function<br>autonomously and set-up their game strategy, they may need to<br>construct and interpret two-way frequency tables of data.                                                                                                                                                                                                      |
| Conditional<br>Probability and the<br>Rules of Probability | Understand<br>independence and<br>conditional probability<br>and use them to<br>interpret data                         | HS.S-CP.A.5 | Recognize and explain the concepts of conditional probability<br>and independence in everyday language and everyday<br>situations. For example, compare the chance of having lung<br>cancer if you are a smoker with the chance of being a smoker if<br>you have lung cancer.                                                                                                                                                                                                                                                                                                                                             | Depending upon the expectations of the coach/mentor, students<br>may analyze conditional probability as it occurs in the real-world<br>outside of the dynamics of the competition.                                                                                                                                                                                                                                                                            |
| Conditional<br>Probability and the<br>Rules of Probability | Use the rules of<br>probability to compute<br>probabilities of<br>compound events in a<br>uniform probability<br>model | HS.S-CP.B.6 | Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depending upon the nature of the challenges in the competition,<br>as students work to program their robot to function autonomously<br>and set-up their game strategy, they may need to find the<br>conditional probability of A given B as the fraction of B's<br>outcomes that also belong to A.                                                                                                                                                            |
| Conditional<br>Probability and the<br>Rules of Probability | Use the rules of<br>probability to compute<br>probabilities of<br>compound events in a<br>uniform probability<br>model | HS.S-CP.B.7 | Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ ,<br>and interpret the answer in terms of the model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depending upon the nature of the challenges in the competition,<br>as students work to program their robot to function autonomously<br>and set-up their game strategy, they may need to apply the<br>Addition Rule to solve problems.                                                                                                                                                                                                                         |
| Conditional<br>Probability and the<br>Rules of Probability | Use the rules of<br>probability to compute<br>probabilities of<br>compound events in a<br>uniform probability<br>model | HS.S-CP.B.8 | (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B A) = P(B)P(A B), and interpret the answer in terms of the model.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depending upon the nature of the challenges in the competition,<br>as students work to program their robot to function autonomously<br>and set-up their game strategy, they may need to apply the<br>Multiplication Rule to solve problems.                                                                                                                                                                                                                   |
| Conditional<br>Probability and the<br>Rules of Probability | Use the rules of<br>probability to compute<br>probabilities of<br>compound events in a<br>uniform probability<br>model | HS.S-CP.B.9 | (+) Use permutations and combinations to compute<br>probabilities of compound events and solve problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | As students work to program their robot to function<br>autonomously, test their robot design, test their robot operation<br>and select a partner team, they will use permutations and<br>combinations to compute probabilities of compound events and<br>solve problems.                                                                                                                                                                                      |
| Using Probability to<br>Make Decisions                     | Calculate expected<br>values and use them<br>to solve problems                                                         | HS.S-MD.A.1 | (+) Define a random variable for a quantity of interest by<br>assigning a numerical value to each event in a sample space;<br>graph the corresponding probability distribution using the same<br>graphical displays as for data distributions.                                                                                                                                                                                                                                                                                                                                                                            | Depending upon how the students are going about establishing their game strategy, they may decide to estimate the likelihood of an event occurring by assigning random values to occurrences. For example, the students may want to determine their likelihood of earning 20 points, so they estimate that they have a 0.5 chance of earning 10 points on Task A, a 0.2 chance of earning 5 points at task B, and a 0.4 chance of earning 8 points on Task C. |

| Using Probability to<br>Make Decisions | Calculate expected values and use them to solve problems | HS.S-MD.A.2   | (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.                                                                                                                                                                                                                                                                                                                                            | As students work to program their robot to function<br>autonomously, test their robot design, test their robot operation<br>and select a partner team, they may need to calculate an<br>expected value that is the mean of the probability distribution.                                                                                                                                                                                                                                 |
|----------------------------------------|----------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Using Probability to<br>Make Decisions | Calculate expected values and use them to solve problems | HS.S-MD.A.3   | (+) Develop a probability distribution for a random variable<br>defined for a sample space in which theoretical probabilities<br>can be calculated; find the expected value. For example, find<br>the theoretical probability distribution for the number of correct<br>answers obtained by guessing on all five questions of a<br>multiple-choice test where each question has four choices, and<br>find the expected grade under various grading schemes. | Depending upon how the students are going about establishing<br>their game strategy, they may decide to estimate the likelihood of<br>an event occurring by using the likelihood of the occurrences. For<br>example, the students may want to determine their likelihood of<br>earning 20 points, through a calculation were they have a 0.5<br>chance of earning 10 points on Task A, a 0.2 chance of earning<br>5 points at task B, and a 0.4 chance of earning 8 points on Task<br>C. |
| Using Probability to<br>Make Decisions | Calculate expected values and use them to solve problems | HS.S-MD.A.4   | (+) Develop a probability distribution for a random variable<br>defined for a sample space in which probabilities are assigned<br>empirically; find the expected value. For example, find a current<br>data distribution on the number of TV sets per household in the<br>United States, and calculate the expected number of sets per<br>household. How many TV sets would you expect to find in 100<br>randomly selected households?                      | Depending upon how the students are establishing their game<br>strategy, they may use expected values. For example, using the<br>data from robot trials, students can calculate the expected<br>number of times their robot will successfully complete a task.                                                                                                                                                                                                                           |
| Using Probability to<br>Make Decisions | Use probability to<br>evaluate outcomes of<br>decisions  | HS.S-MD.B.5.A | <ul> <li>(+) Weigh the possible outcomes of a decision by assigning<br/>probabilities to payoff values and finding expected values.</li> <li>a. Find the expected payoff for a game of chance. For<br/>example, find the expected winnings from a state lottery ticket<br/>or a game at a fast-food restaurant.</li> </ul>                                                                                                                                  | Throughout the <i>FIRST</i> ® Robotics Challenge, students will use<br>probabilities to analyze their robot's autonomous functioning,<br>their game strategy and select a partner team.                                                                                                                                                                                                                                                                                                  |
| Using Probability to<br>Make Decisions | Use probability to<br>evaluate outcomes of<br>decisions  | HS.S-MD.B.5.B | <ul> <li>(+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.</li> <li>b. Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.</li> </ul>                                                            | Throughout the <i>FIRST</i> ® Robotics Challenge, students will use<br>probabilities to analyze their robot's autonomous functioning,<br>their game strategy and select a partner team.                                                                                                                                                                                                                                                                                                  |
| Using Probability to<br>Make Decisions | Use probability to<br>evaluate outcomes of<br>decisions  | HS.S-MD.B.6   | (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).                                                                                                                                                                                                                                                                                                                                                      | Students will use probabilities to determine student order or<br>opportunities to participate in specific tasks (e.g., driving the<br>robot, speaking for the team).                                                                                                                                                                                                                                                                                                                     |
| Using Probability to<br>Make Decisions | Use probability to<br>evaluate outcomes of<br>decisions  | HS.S-MD.B.7   | (+) Analyze decisions and strategies using probability concepts<br>(e.g., product testing, medical testing, pulling a hockey goalie at<br>the end of a game).                                                                                                                                                                                                                                                                                               | Throughout the <i>FIRST</i> ® Robotics Challenge, students will use<br>probabilities to analyze their robot's autonomous functioning, test<br>their robot operation and select a partner team.                                                                                                                                                                                                                                                                                           |