Rationale

Color Code

There is no evidence that the standard is addressed as part of aFIRST ${ }^{\circledR}$ program.
This standard potentially could be addressed as part of aFIRST ${ }^{\circledR}$
program either by actions that the coach/mentor takes when working with the students or by conditions established by the program for that given year.

The standard is clearly addressed by program activities.

FIRST®

As part of the FIRST ${ }^{\text {® }}$ Tech Challenge experience students will be expected to analyze the various challenges, develop solutions, test and refine their answers all while using mathematical formulas and data. These actions are at the heart of the mathematical practice of making sense of problems and persevering to determine solutions.
tudents in the FIRST ${ }^{\circledR}$ Tech Challenge program will solve a variety of problems allowing them to develop their ability to reason both quantitatively
and abstractly as they work to solve problems associated with designing and abstractly as they work to solve problems associated with designing, building, and programming their robot

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. Th are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematica proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the stuation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.
Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familia with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are ab to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.
 arguments.

Students in the FIRST ${ }^{\circledR}$ Tech Challenge program will use mathematics and mathematical tools (e.g., charts, graphs, tables) to create different models that inform choices they make about robot design and programming and to track and predict competitor's performance, as well as identify potential lliance partnerships.

Students in the FIRST ${ }^{\circledR}$ Tech Challenge program will use a variety of ageappropriate mathematical tools (e.g., charts, graphs, tables, calculators) to olve mathematical problems encountered as they work to program their robot and optimize their strategy to address the various challenges.

Indicator/Skill

FIRST ${ }^{\circledR}$

Explain how the definition of the meaning of rational exponents follow from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}$ $=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 .

Students in the FIRST ${ }^{\circledR}$ Tech Challenge program in order to complete the hallenges in the most efficient manner possible will have to develop their mathematical precision as they program their robot to interact with the different challenge structures as well as navigate the challenge board
tudents in the FIRST ${ }^{\circledR}$ Tech Challenge program will learn to recognize and use patterns to solve problems and challenges. In particular, students will take advantage of the properties of different shapes when they build different challenges.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-$ $1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)(x 2+x+1)$, and $(x-1)(x 3+x 2+x+1)$ might lead them to the general formula for the sum of a geometric series. As they oversight of the prom, mathematically protice details. They continually evaluate the reasonableness of their intermediate results.

Not Applicable

The Real Number System	Extend the properties of exponents to rational exponents.	HS.N-RN.A. 2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.			
The Real Number System	Use properties of rational and irrational numbers.	HS.N-RN.B. 3	Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.			
Quantities	Reason quantitatively and use units to solve problems.	HS.N-Q.A. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas choose and interpret the scale and the origin in graphs and data displays.			
Quantities	Reason quantitatively and use units to solve problems.	HS.N-Q.A. 2	Define appropriate quantities for the purpose of descriptive modeling.			
Quantities	Reason quantitatively and use units to solve problems.	HS.N-Q.A. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.			
The Complex Number System	Perform arithmetic operations with complex numbers.	HS.N-CN.A. 1	Know there is a complex number i such that $\mathcal{i}=-1$, and every complex number has the form $\mathrm{a}+\mathrm{bi}$ with a and b real.			
The Complex Number System	Perform arithmetic operations with complex numbers.	HS.N-CN.A. 2	Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.			
The Complex Number System	Perform arithmetic operations with complex numbers.	HS.N-CN.A. 3	(+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.			
The Complex Number System	Represent complex numbers and their operations on the complex plane.	HS.N-CN.B. 4	${ }^{(+)}$Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.			
The Complex Number System	Represent complex numbers and their operations on the complex plane.	HS.N-CN.B. 5	(+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+\sqrt{3} i) 3=8$ because $(-1+\sqrt{3} i)$ has modulus 2 and argument 120°.			
The Complex Number System	Represent complex numbers and their operations on the complex plane.	HS.N-CN.B. 6	(+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.			
The Complex Number System	Use complex numbers in polynomial identities and equations.	HS.N-CN.C. 7	Solve quadratic equations with real coefficients that have complex solutions.			
The Complex Number System	Use complex numbers in polynomial identities and equations.	HS.N-CN.C. 8	(+) Extend polynomial identities to the complex numbers. For example, rewrite $\mathrm{x} 2+4$ as $(x+2 i)(x-2 i)$.			
The Complex Number System	Use complex numbers in polynomial identities and equations.	HS.N-CN.C. 9	(+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.			
Vector and Matrix Quantities	Represent and model with vector quantities.	HS.N-VM.A. 1	(+) Recognize vector quantities as having both magnitude and direction Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, \|v	, $\\|v\\|, v)$.		
Vector and Matrix Quantities	Represent and model with vector quantities.	HS.N-VM.A. 2	${ }^{(+)}$Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.			
Vector and Matrix Quantities	Represent and model with vector quantities.	HS.N-VM.A. 3	(+) Solve problems involving velocity and other quantities that can be represented by vectors.			

$\left.\begin{array}{clll} & & \text { (+) Add and subtract vectors. } \\ \begin{array}{c}\text { Vector and Matrix } \\ \text { Quantities }\end{array} & \begin{array}{l}\text { Perform operations on } \\ \text { vectors. }\end{array} & \text { HS.N-VM.B.4.A }\end{array} \begin{array}{l}\text { a. Add vectors end-to-end, component-wise, and by the parallelogram } \\ \text { rule. Understand that the magnitude of a sum of two vectors is typically } \\ \text { not the sum of the magnitudes } \\ \text { (+) Add and subtract vectors. }\end{array}\right\}$
As the students program their robot to operate autonomously, they will need solve vector problems using a variety of methods to accurately program the motion of the robot

As the students program their robot to operate autonomously, they will need to determine the sum of the magnitude and direction of two vectors to accurately program the motion of the robot.

As the students program their robot to operate autonomously, they will need to solve vector subtraction problems using a variety of methods, including graphically, to accurately program the motion of the robot.

As the students program their robot to operate autonomously, they will need o multiply a vector by a scalar using a variety of methods, including graphically or component-wise, to accurately program the motion of the robot.

As the students program their robot to operate autonomously, they will need o compute the magnitude of a scalar multiple using a variety of methods to accurately program the motion of the robot.

As the students manipulate the data they collect to program the robot to function autonomously, they may use matrices,

Depending upon how the students want to manipulate the data they collect to program the robot to function autonomously, they may multiply matrices by a scalar.

As students manipulate the data they collect to program the robot to function autonomously, they may add, subtract, and multiply matrices.

If students are working with matrices to manipulate the data their using to program the robot, they may have the opportunity to realize that matrix multiplication for square matrices is not a commutative operation.
If students are working with matrices to manipulate the data their using to program the robot, they may have the opportunity to realize that the determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.
Since students will have to use vectors to describe the motion of the robot during its autonomous phase, they will work with matrices as transformations of vectors.

In order to program the robot to autonomously function in the competition space, students will have to convert the physical space into 2×2 matrices.

Depending upon how the coach/mentor approaches the use of equations to determine values to use in robot construction or programming, students may have the opportunity to examine and identify the terms, factors, and coefficients in a calculation.

Depending upon how the coach/mentor approaches the use of equations to determine values to use in robot construction or programming, students may have the opportunity to simplify complicated expressions by viewing one or more of their parts as a single entity.

Seeing Structure in Interpret the structure of
Expressions expressions

Seeing Structure in
Write expressions in
equivalent forms to solve problems

Seeing Structure in Write expressions in
Expressions
s to solve problems

Seeing Structure in	Write expressions in Equivalent forms to solve
Expressions	problems

Write expressions in
Seeing Structure in
Wre expressions in Expressions problems

Arithmetic with
Polynomials and Rational Perform arithmetic Expressions operations on polynomials

Understand the
Polynomials and Rational relationship between
Expressions zeros and factors of
Understand the
Arithmetic with relationship between
Expressions \quad zeros and factors of Expressions polynomials
Arithmetic with

Arithmetic with

Andials and Rational Use polynomial identities Expressions to solve problems

Arithmetic with

Polynomials and Rational $\begin{aligned} & \text { Rewrite rational } \\ & \text { expressions }\end{aligned}$
Expressions

HS.A-SSE.A. 2

HS.A-SSE.B.3.A explain properties of the quantity represented by the expression.
a. Factor a quadratic expression to reveal the zeros of the function it defines.

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15 can be rewritten as $\left(1.15^{1 / 12}\right)^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalen monthly interest rate if the annual rate is 15%.

Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.

Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.

Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity
$x^{2}+$ $\left.y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.
${ }^{(+)}$Know and apply the Binomial Theorem for the expansion of ($x+y$) in powers of x and y for a positive integer n , where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. 1
Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomial with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a
computer algebra system.

Depending upon how the coach/mentor approaches the use of equations determine values to use in robot construction or programming, students may have the opportunity to rewrite equations into equivalent forms that are easier to solve.

Depending upon the challenges encountered in the competition or design features of their robot, students may have the opportunity to factor a quadratic expression to reveal the zeros of the function

Depending upon how the coach/mentor approaches the use of equations to determine values to use in robot programming, students may have the opportunity to complete the square in a quadratic expression to reveal the maximum or minimum value of the function.

Depending upon the calculations and formulas used to guide robot construction and programming, students may have the opportunity to use the properties of exponents to transform expressions for exponential unctions.

Students may need to derive the formula for the sum of a finite geometric eries (e.g., battery life) to determine values used in robot construction and programming.

Depending upon the calculations and formulas used to guide robo construction and programming, students may have the opportunity to realize hat polynomials are like integers in that they can be added, subtracted, multiplied, and divided

Depending upon the calculations and formulas used to guide robot construction and programming, students may have the opportunity to apply te Remainder Theorem.

Depending upon the calculations and formulas used to guide robot construction and programming, students may have the opportunity to construct a rough graph of the function defined by the polynomial.
Students will need to prove polynomial identities and use them to describe numerical relationships in order to determine the appropriate values to rogram into the robot in order to interact with challenges during the autonomous phase of the competition

Depending upon the exact factors that students are trying to establish the numerical relationship between, they may apply the Binomial Theorem to determines values used to program the robot to interact with challenges during the autonomous phase of the competition.

Students will need to rewrite simple rational expressions and use them to describe numerical relationships in order to determine the appropriate describe numerical relationships in order to determiong or
values to for robot construction or programming.

Arithmetic with Polynomials and Rationa Expressions	Rewrite rational expressions	HS.A-APR.D. 7	(+) Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
Creating Equations	Create equations that describe numbers or relationships	HS.A-CED.A. 1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
Creating Equations	Create equations that describe numbers or relationships	HS.A-CED.A. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
Creating Equations	Create equations that describe numbers or relationships	HS.A-CED.A. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
Creating Equations	Create equations that describe numbers or relationships	HS.A-CED.A	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V $=\mathbb{R}$ to highlight resistance R .
Reasoning with Equations and Inequalities	Understand solving equations as a process of reasoning and explain the reasoning	HS.A-REI.A. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
Reasoning with Equations and Inequalities	Understand solving equations as a process of reasoning and explain the reasoning	HS.A-REI.A. 2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable	HS.A-REI.B. 3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
			Solve quadratic equations in one variable.
Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable	HS.A-REI.B.4.A	a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(\mathrm{x}-\mathrm{p})^{2}=\mathrm{q}$ that has the same solutions. Derive the quadratic formula from this form.
			Solve quadratic equations in one variable
Reasoning with Equations and Inequalities	Solve equations and inequalities in one variable	HS.A-REI.B.4.B	b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $\mathrm{a} \pm \mathrm{b}$ for real numbers a and b .
Reasoning with Equations and Inequalities	Solve systems of equations	HS.A-REI.C. 5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
Reasoning with Equations and Inequalities	Solve systems of equations	HS.A-REI.C. 6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Reasoning with Equations and Inequalities	Solve systems of equations	HS.A-REI.C. 7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle ? $+\mathrm{y}^{2}=3$.
Reasoning with Equations and Inequalities	Solve systems of equations	HS.A-REI.C. 8	(+) Represent a system of linear equations as a single matrix equation in a vector variable.
Reasoning with Equations and Inequalities	Solve systems of equations	HS.A-REI.C. 9	(+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).
Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically	HS.A-REI.D. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically	HS.A-REI.D. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
Reasoning with Equations and Inequalities	Represent and solve equations and inequalities graphically	HS.A-REI.D. 12	Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Interpreting Functions	Understand the concept of a function and use function notation	HS.F-IF.A. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
Interpreting Functions	Understand the concept of a function and use function notation	HS.F-IF.A. 2	Use function notation, evaluate functions for inputs in their domains, anc interpret statements that use function notation in terms of a context.
Interpreting Functions	Understand the concept of a function and use function notation	HS.F-IF.A. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=$ $f(n)+f(n-1)$ for $n \geq 1$.
Interpreting Functions	Interpret functions that arise in applications in terms of the context	HS.F-IF.B. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
Interpreting Functions	Interpret functions that arise in applications in terms of the context	HS.F-IF.B. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines ir a factory, then the positive integers would be an appropriate domain for the function.

Interpret functions that
Interpreting Functions arise in applications in

Interpreting Functions $\begin{aligned} & \text { An } \\ & \text { diff }\end{aligned}$
Analyze functions using different representation

Interpreting Functions | Analyze functions using |
| :--- |
| different representations |

Interpreting Functions
Analyze functions using
different representations

Analyze functions using different representations different representations

HS.F-IF.B. 6
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases
c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases
d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, an amplitude.

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

Not Applicable

Not Applicable

Depending upon the values students are working to determine for robot construction and programming, they may graph rational functions.

Not Applicable

intercepts, maxima, and minima.

```
As students work to determine values to use in robot construction and programming (e.g. robot speed), they will calculate and interpret the average rate of change of a function.
As students work to determine values to use in robot construction and programming, they will graph linear and quadratic functions and show
average rate of change of a function.
```

Depending upon the values students are working to determine for robot construction and programming, they may use the process of factoring and ompleting the square.

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function

Analyze functions using different representations

Interpreting Functions
Analyze functions using different representations

Build a function that models a relationship between two quantities

Build a function that models a relationship between two quantities

Build a function that
Building Functions relationship between two quantities

Build a function that models a relationship between two quantities

Building Functions Build new functions from existing functions

Building Functions
Build new functions from existing functions

HS.F-IF.C.8.B
b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02)^{1}, y=(0.97)^{\ell}, y=(1.01)^{121}, y=(1.2)^{1 / 10}$, and classify them as representing exponential growth or decay.

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum

Write a function that describes a relationship between two quantities
a. Determine an explicit expression, a recursive process, or steps for calculation from a context.

Write a function that describes a relationship between two quantities.
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling bo by adding a constant function to a decaying exponential, and relate these functions to the model.

Write a function that describes a relationship between two quantities
HS.F-BF.A.1.C c. (+) Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weathe balloon as a function of time, then $T(\mathrm{~h}(\mathrm{t})$) is the temperature at the location of the weather balloon as a function of time.

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(o x)$, and $f(x+k)$ for specific values of k (both positive and negative); find th value of k given the graphs. Experiment with cases and illustrate an explaniion recognizing even and expressions for them

Find inverse functions
a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)$ $=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$.
Find inverse functions.

Build new functions from existing functions

| | Huilding Functions | Build new functions from
 existing functions | HS.F-BF.B.4.C |
| :---: | :--- | :--- | :--- | | Find inverse functions. |
| :--- |
| c. (+) Read values of an inverse function from a graph or a table, given |
| that the function has an inverse |
| Find inverse functions. |

Model periodic
Model periodic
Trigonometric Functions phenomena with trigonometric functions
Model periodic
Trigonometric Functions phenomena with
trigonometric functions
Model periodic
Trigonometric Functions phenomena with $\begin{aligned} & \text { trigonometric functions }\end{aligned}$
Trigonometric Functions Prove and apply trigonometric identities

Trigonometric Functions Prove and apply trigonometric identities

Experiment with
Congruence

Congruence

Congruence

Congruence
Experiment with transfo
plane

Experiment with transformations in the plane

Congruence Understand congruence in terms of rigid motions

Congruence
Understand congruence in terms of rigid motions

Understand congruence in terms of rigid motions
Experiment with transformations in the plane

Experiment with transformations in the plane
sformations in th

Congruence

Congruence

Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.
${ }^{(+)}$Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.
${ }^{(+)}$Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the contex
Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle.
(+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

Know precise definitions of angle, circle, perpendicular line, parallel line and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Represent transformations in the plane using, e.g., transparencies an geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

Given a rectangle, parallelogram, trapezoid, or regular polygon describe the rotations and reflections that carry it onto itself.

Develop definitions of rotations, reflections, and translations in terms angles, circles, perpendicular lines, parallel lines, and line segments.

Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another

Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Depending upon the values students are working to determine for robot construction, programming or interacting with challenges, they may choose rigonometric functions to model periodic phenomena with specified
amplitude, frequency, and midline
Depending upon the values students are working to determine for robot construction and programming, they may restrict trigonometric functions to ne domain allowing inverses to be constructed
Depending upon the values students are working to determine for robot construction and programming, they may use inverse functions to solve rigonometric equations
Depending upon the values students are working to determine for robot
construction and programming, they may prove the construction and programming, they may prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to solve problems
Depending upon the values students are working to determine for robot construction and programming, they may prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.
As students work to program their robot to function autonomously, they will make use of specific geometric definitions. If teams use CAD design and/o 3D printing, they will need to know characteristics of many geometric figures.

As students work to design, construct, and program their robot to function autonomously, they will make use of transformations in a plane to identify ocations or placement of parts. If teams use CAD design and/or 3D printing, they will need to apply properties of transformations.

As students work to design, construct, and program their robot to function autonomously, they will make use of reflections and rotations of various shapes to outline the look of the robot, placement of parts, and approaches to navigation. If teams use CAD design and/or 3D printing, they will need to apply properties of transformations.
As students work to design, construct, and program their robot to function autonomously, they will make use of reflections and rotations of various shapes to outline the look of the robot, placement of parts, and approaches to navigation. If teams use CAD design and/or 3D printing, they will need to apply properties of transformations.
As students work to design, construct, and program their robot to function autonomously, they will make use of reflections and rotations of various hapes to outline the look of the robot, placement of parts, and approaches to navigation. If teams use CAD design and/or 3D printing, they will need to poly properties of transformations.

As students work to design, construct, and program their robot to function autonomously, they will make use of reflections and rotations of various shapes to outline the look of the robot, placement of parts, and approaches o navigation. If teams use CAD design and/or 3D printing, they will need to understand congruence in terms of rigid motion.
Depending upon the expectations of the coach/mentor, students may have the opportunity when working with triangles to use the concept of congruence to prove that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. fteams use CAD des pply properties of transformations
he opportunity when working with tria triangles to explain how the criteria for riangle congruence follow from the definition of congruence in terms of rigid motions.

Congruence	Prove geometric theorems	HS.G-CO.C. 9	Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
Congruence	Prove geometric theorems	HS.G-CO.C. 10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
Congruence	Prove geometric theorems	HS.G-CO.C. 11	Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
Congruence	Make geometric constructions	HS.G-CO.D. 12	Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
Congruence	Make geometric constructions	HS.G-CO.D. 13	Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations	HS.G-SRT.A.1.A	Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations	HS.G-SRT.A1.B	Verify experimentally the properties of dilations given by a center and a scale factor: b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations	HS.G-SRT.A. 2	transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
Similarity, Right Triangles, and Trigonometry	Understand similarity in terms of similarity transformations	HS.G-SRT.A. 3	Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
Similarity, Right Triangles, and Trigonometry	Prove theorems involving similarity	HS.G-SRT.B. 4	Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
Similarity, Right Triangles, and Trigonometry	Prove theorems involving similarity	HS.G-SRT.B. 5	Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles	HS.G-SRT.C. 6	Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles	HS.G-SRT.C. 7	Explain and use the relationship between the sine and cosine of complementary angles.

Similarity, Right Triangles, and Trigonometry	Define trigonometric ratios and solve problems involving right triangles	HS.G-SRT.C. 8	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles	HS.G-SRT.D. 9	(+) Derive the formula $A=1 / 2 \mathrm{ab} \sin (\mathrm{C})$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles	HS.G-SRT.D. 10	(+) Prove the Laws of Sines and Cosines and use them to solve problems.
Similarity, Right Triangles, and Trigonometry	Apply trigonometry to general triangles	HS.G-SRT.D. 11	${ }^{(+)}$Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).
Circles	Understand and apply theorems about circles	HS.G-C.A. 1	Prove that all circles are similar.
Circles	Understand and apply theorems about circles	HS.G-C.A. 2	Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
Circles	Understand and apply theorems about circles	HS.G-C.A. 3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Circles	Understand and apply theorems about circles	HS.G-C.A. 4	${ }^{(+)}$Construct a tangent line from a point outside a given circle to the circle.
Circles	Find arc lengths and areas of sectors of circles	HS.G-C.B. 5	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section	HS.G-GPE.A. 1	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section	HS.G-GPE.A. 2	Derive the equation of a parabola given a focus and directrix.
Expressing Geometric Properties with Equations	Translate between the geometric description and the equation for a conic section	HS.G-GPE.A. 3	(+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.
Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically	HS.G-GPE.B. 4	Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, $\sqrt{3}$) lies on the circle centered at the origin and containing the point (0 , 2).
Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically	HS.G-GPE.B. 5	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically	HS.G-GPE.B. 6	Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Expressing Geometric Properties with Equations	Use coordinates to prove simple geometric theorems algebraically	HS.G-GPE.B. 7	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.
Geometric Measurement and Dimension	Explain volume formulas and use them to solve problems	HS.G-GMD.A. 1	Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.

As students work to design, construct, and program their robot to function autonomously, they will use trigonometric ratios and the Pythagorean Theorem to solve problems.
 ot Applicable

Depending upon the expectations of the coach/mentor, students may use the Laws of Sines and Cosines to solve problems
As students work to design, construct, and program their robot to function autonomously, they will apply the Law of Sines and the Law of Cosines to solve problems.
Not Applicable
Depending upon the expectations of the coach/mentor, students may identify and describe relationships among inscribed angles, radii, and chords and use these facts to solve problems.

Depending upon the expectations of the coach/mentor, students may construct the inscribed and circumscribed circles of a triangle and quadrilateral.
Depending upon the expectations of the coach/mentor, students may construct a tangent line and use it to solve problems
Depending upon the expectations of the coach/mentor, students may derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius and use it to solve problems.

Depending upon the expectations of the coach/mentor, students may derive the equation of a circle of given center and radius using the Pythagorean Theorem.

Depending upon the expectations of the coach/mentor, students may derive the equation of a parabola with a given focus and directix.

Depending upon the expectations of the coach/mentor, students may derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.

As students work to design, construct, and program their robot to function autonomously, they may use coordinates to prove simple geometric theorems algebraically.

As students work to design, construct, and program their robot to function autonomously, they will prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems

As students work to design, construct, and program their robot to function autonomously, they will find the point on a directed line segment between two given points that partitions the segment in a given ratio.

As students work to design, construct, and program their robot to function autonomously, they will use coordinates to compute perimeters of polygons and areas of triangles and rectangles and solve problems.

Depending upon the expectations of the coach/mentor, students may give an informal argument for the formulas associated with a circle.
$\left.\begin{array}{cll}\begin{array}{c}\text { Geometric Measurement } \\ \text { and Dimension }\end{array} & \begin{array}{l}\text { Explain volume formulas } \\ \text { and use them to solve } \\ \text { problems }\end{array} & \text { HS.G-GMD.A. } 2\end{array} \begin{array}{l}\text { (+) Give an informal argument using Cavalieri's principle for the } \\ \text { formulas for the volume of a sphere and other solid figures. }\end{array}\right]$

Geometric Measurement $\begin{aligned} & \text { Explain volume formulas } \\ & \text { and use them to solve }\end{aligned}$ and Dimension

Explain volume formulas and use them to solve problems Visualize relationships objects

Modeling with Geometry Apply geometric concepts
Apply geometric concepts in modeling situations
in modeling situations

Summarize, represent,
and interpret data on a
measurement variable Summarize, represent,
interpreting Categorical and interpret data on a Quantitative Data single count or Summarizent variable and interpret data on a Interpreting Categorica single count or Summarize, represent, Interpreting Categorical and interpret data on a and Quantitative Data single count or measurement variable

Summarize, represent,
Interpreting Categorical and interpret data on two quantitative variable

Summarize, represent,
Interpreting Categorical and interpret data on two and Quantitative Data categorical and quantitative variables

Summarize, represent,
interpreting Categorical and interpret data on two and Quantitative Data categorical and Summarize, represent, and Quantitative Data categorical and
ing Categorical and Quantitative Data

Depending upon the expectations of the coach/mentor, students may give an informal argument for Cavalieri's principle.

Depending upon the design of their robot and the challenges encountered in the competition, students may have to use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Depending upon the design of their robot and the challenges encountered in the competition, students may have to use conversions of two-dimensional objects to solve problems.
Depending upon the design of their robot and the challenges encountered in the competition, students may use geometric shapes, their measures, and their properties to describe objects
Depending upon the design of their robot and the challenges encountered in the competition, students may apply concepts of density based on area and volume in modeling situations

As students work to design, construct, and program their robot to function autonomously, they will apply geometric methods to design problems.

As students work to design, construct, program their robot to function autonomously, and select a partner team, they will represent data with plots on the real number line

As students work to program their robot to function autonomously and select a partner team, they will use statistics appropriate to the shape of the data distribution
As students work to program their robot to function autonomously and select a partner team, they will interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data point.
As students work to program their robot to function autonomously and possibly select an alliance team, they will interpret differences in shape, effects of extreme data points. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population data set to fit
As students work to program their robot to function autonomously and possibly select an alliance team, they will summarize categorical data for wo categories in two-way frequency tables and interpret relative equencies.

As students work to program their robot to function autonomously and possibly select an alliance team, they will fit a function to the data; use unctions fitted to data to solve problems

As students work to program their robot to function autonomously and possibly select an alliance team, they will informally assess the fit of a function by plotting and analyzing residuals.

As students work to program their robot to function autonomously and possibly select an alliance team, they will informally assess the fit a linear function for a scatter plot that suggests a linear association.

As students work to program their robot to function autonomously and possibly select an alliance team, they will interpret the slope (rate of change and the intercept (constant term) of a linear model in the context of the data

Understand and evaluate
Making Inferences and random processes
Justifying Conclusions underlying statistical Justifying Conclusions underlying statistical experiments
Understand and evaluate
Making Inferences and random processes
Justifying Conclusions underlying statistical experiments
Make inferences and
Making Inferences and justify conclusions from Justifying Conclusions sample surveys, experiments, and observational studies justify conclusions from
Making Inferences and Justify conclusion from
Justifying Conclusions
sample surveys, expervational studi Make inferences and justify conclusions from sample surveys, experiments, and observational studie Make inferences and justify conclusions from
Making Inferences and sample surveys, experiments, and
observational studies Understand independence Conditional Probability and conditional probability and the Rules of and use them to interpret Probability and use them to interpret data

Understand independence
Conditional Probability and conditional probability and the Rules of and use them to interpret Probability and the Rules of Probability

Understand independence and use them to interpret data

Compute (using technology) and interpret the correlation coefficient o linear fit.

HS.S-ID.C. 9 Distinguish between correlation and causation.

Understand statistics as a process for making inferences about

Understand independence Conditional Probability and conditional probability and the Rules of and use them to interpret
Probability Probability data
population parameters based on a random sample from that population

Decide if a specified model is consistent with results from a given data generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?

Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

Use data from a randomized experiment to compare two treatments use simulations to decide if differences between parameters are significant.

HS.S-IC.B. 6 Evaluate reports based on data.

HS.S-CP.A. 1

HS.S-CP.A. 2

HS.S-CP.A. 3
HS.S-IC.A. 1

HS.S-IC.A. 2

HS.S-IC.B. 3

HS.S-IC.B. 4

HS.S-IC.B. 5
and interpret ind A or A as A ay $P(A$ and (B). and inaility of A given B is the A as , conditional probability of B given A is the same the pro A,

Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected sctudent from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.

As students work to program their robot to function autonomously and possibly select an alliance team, they will compute and interpret the correlation coefficient of a linear fit.

As students work to program their robot to function autonomously and possibly select an alliance team, they will distinguish between correlation and causation.

As students work to program their robot to function autonomously and possibly select an alliance team, they will understand statistics as a proces for making inferences about population parameters based on a random sample.

As students work to program their robot to function autonomously and possibly select an alliance team, they will decide if a specified model is consistent with results from a given data-generating process.

Depending upon coach/mentor expectations as students work to program their robot to function autonomously and possibly select an alliance team, they may recognize the purposes of and differences among sample surveys, experiments, and observational studies.

Depending upon how a team chooses to plan for fundraising or outreach activities, students may use data from a sample survey to estimate a population mean or proportion and develop a margin of error.

Depending upon how students go about testing their robot design, programming, and user operation, they may use data from a randomized experiment to compare different treatments.

As students work to program their robot to function autonomously, test their obot design, test their robot operation and possibly select an alliance team hey will evaluate reports based on data.

Depending upon the nature of the challenges in the competition, and as tudents work to program their robot to function autonomously and set-up their game strategy, they may work with events as subsets of a sample (e.g., how many red rings are added to the highest peg as opposed to blue ings?)
Depending upon the nature of the challenges in the competition, and as students work to program their robot to function autonomously and set-up heir game strategy, they may need to determine whether two events are independent (e.g., How many red balls are added to the basket?, How man lue rings are added to the highest peg?
Depending upon the nature of the challenges in the competition, and as tudents work to program their robot to function autonomously and set-up heir game strategy, they may need to use conditional probabiity to determine of two events are independent (e.g., How many red balls are added to the basket?, How many blue rings are added to the highest peg?)

Depending upon the nature of the challenges in the competition, and as students work to program their robot to function autonomously and set-up their game strategy, they may need to construct and interpret two-way frequency tables of data.

Conditional Probability and the Rules of Probability	Understand independence and conditional probability and use them to interpret data	HS.S-CP.A. 5	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.
Conditional Probability and the Rules of Probability	Use the rules of probability to compute probabilities of compound events in a uniform probability model	HS.S-CP.B. 6	Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A , and interpret the answer in terms of the model.
Conditional Probability and the Rules of Probability	Use the rules of probability to compute probabilities of compound events in a uniform probability model	HS.S-CP.B. 7	Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.
Conditional Probability and the Rules of Probability	Use the rules of probability to compute probabilities of compound events in a uniform probability model	HS.S-CP.B. 8	(+) Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.
Conditional Probability and the Rules of Probability	Use the rules of probability to compute probabilities of compound events in a uniform probability model	HS.S-CP.B. 9	(+) Use permutations and combinations to compute probabilities of compound events and solve problems.
Using Probability to Make Decisions	Calculate expected values and use them to solve problems	HS.S-MD.A. 1	(+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
Using Probability to Make Decisions	Calculate expected values and use them to solve problems	HS.S-MD.A. 2	(+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
Using Probability to Make Decisions	Calculate expected values and use them to solve problems	HS.S-MD.A. 3	(+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
Using Probability to Make Decisions	Calculate expected values and use them to solve problems	HS.S-MD.A. 4	(+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?
Using Probability to Make Decisions	Use probability to evaluate outcomes of decisions	HS.S-MD.B.5.A	(+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values. a. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.

(+) Weigh the possible outcomes of a decision by assigning

Using Probability to Make Use probability to Decisions evaluate outcomes of decisions

Using Probability to Make Use probability to Decisions evaluate outcomes of ecisions
Using Probability to Make Use probability to
Decisions
valuate outcomes of ecisions
probabilities to payoff values and finding expected values.

HS.S-MD.B.5.B b. Evaluate and compare strategies on the basis of expected values For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.
HS.S-MD.B. $6 \quad(+)$ Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

Throughout the FIRST® Robotics Challenge, students will use probabilities to analyze their robot's autonomous functioning, their game strategy and elect a partner team.

Depending upon coach/mentor expectations, probabilities may be used to determine student order or opportunities to participate in specific tasks (e.g. riving the robot, speaking for the team)

Robotics Challenge, students will use probabilities o analyze their robot's autonomous functioning, test their robot operation and select a partner team

