Rationale

There is no evidence that the standard is addressed as part of a FIRST ${ }^{\circledR}$ program

This standard potentially could be addressed as part of a FIRST ${ }^{\oplus}$ program either by actions that the coach/mentor takes when working with the students or by conditions established by the program for that given year.

The standard is clearly addressed by program activities.

Standards for Mathematical Practice

Mathematically proticient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important feature and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a俍 nroblem Mathematicallv n nroficient students cher.k
Mathematically proficient students make sense of quantities and their relationships in problem situations They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing

Standards for Mathematical Practice

Make sense of problems and persevere in solving them.

Standards for
Mathematical Practice

Reason abstractly and
quantitatively.

Color Code

 stated assumptions, definitions, and previously established results in constructing arguments. They mak conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made
 mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient student depends on and who can apply what they know are comfortable making assurion, relizing that these may need revision later. situation, realizin They are able to identify important quantities in a practica situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematicallv to draw conclusions. Thev routinelv
Mathematically proticient students consider the availabie tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students a various grade levels are able to identify relevant external mathematical resources, such as digital content located mathematical resources, such as digital content located

Building off the first practice, students in the FIRST ${ }^{\circledR}$ Tech Challenge program will interact with their peers and be expected to provide reasoned critique of solutions supported by evidence and viable arguments.

Students in the FIRST ${ }^{\circledR}$ Tech Challenge program will use mathematics and mathematical tools (e.g., charts, graphs, tables) to create different models that inform choices they make about robot design and programming, and to track and predict competitor's performance as well as identify potential alliance partnerships.

Students in the FIRST ${ }^{\circledR}$ Tech Challenge program will use a variety of ageappropriate mathematical tools (e.g., charts, graphs, tables, calculators) to solve mathematical problems encountered as they work to program their robot and optimize their strategy to address the various challenges.

Standards for Mathematical Practice

Standards for Mathematical Practice

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units weasure, and labe axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, expres numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to eac other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.
Mathematically proficient students look closely to discern pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $\mathrm{x} 2+9 \mathrm{x}+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a
geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y) 2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y .

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding (x 1) $(x+1),(x-1)(x 2+x+1)$, and $(x-1)(x 3+x 2+x+1)$ might lead them to the general formula for the sum of geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results

Students in the FIRST ${ }^{\circledR}$ Tech Challenge program, in order to complete the challenges in the most efficient manner possible, will have to develop their mathematical precision as they program their robot to interact with the different challenge obstacles as well as navigate the challenge field.

Students in the FIRST ${ }^{\circledR}$ Tech Challenge program will learn to recognize and use patterns to solve problems and challenges. In particular, students will take advantage of the properties of different shapes when they build their robot, program its movements, and determine solutions for the different challenges.

Students in the FIRST ${ }^{\circledR}$ Tech Challenge program will be able to experience regularity in repeated reasoning as they program their robot to complete the different challenges in the game

Know that there are
numbers that are no
The Number System rational, and approximate them by rational numbers

Know that there are
numbers that are not
rational, and approximate them by rational numbers

Expressions and Equations

Expressions and Equations

Work with radicals and integer exponents

Work with radicals and integer exponents

Expressions and
Work with radicals and integer exponents integer exponents.

Understand the

 connections between proportional relationships, lines, and linea equations.
Understand the

connections between
proportional relationsh lines, and linear equations.

Know that numbers that are not rational are called irrational. Understand informally that every number has decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., m2). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations

Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $32 \times 3-5=3-3=1 / 33=1 / 27$
Use square root and cube root symbols to represen solutions to equations of the form $x 2=p$ and $x 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.

Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very smal quantities, and to express how many times as much one than the other. For example, estimate the population of the United States as 3×108 and the population of the world as 7×109, and determine that the world population is more than 20 times larger.

Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of ve large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different
proportional relationships represented in different ways.
For example, compare a distance-time graph to a distance time equation to determine which of two moving objects has greater speed.

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

As part of programming, students will analyze the relationships between values (i.e. distance vs. time) using both graphs and equations to represent the data.

Solve linear equations in one variable.
$\left.\begin{array}{cl}\text { Expressions and } \\ \text { Equations } & \begin{array}{l}\text { Analyze and solve linear } \\ \text { equations and pairs of } \\ \text { simultaneous linear } \\ \text { equations. }\end{array} \\ \text { Expressions and } \\ \text { Equations }\end{array} \begin{array}{l}\text { Analyze and solve linear } \\ \text { equations and pairs of } \\ \text { simultaneous linear } \\ \text { equations. }\end{array}\right\}$
a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $\mathrm{x}=\mathrm{a}, \mathrm{a}=\mathrm{a}$, or $\mathrm{a}=\mathrm{b}$ results (where a and b are different numbers) Solve linear equations in one variable.
b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
Analyze and solve pairs of simultaneous linear equations.
Understand that solutions to a system of two linear a. Understand that solutions to a system of two lin equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

Analyze and solve pairs of simultaneous linear equations. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+$ $2 y$ cannot simultaneously be 5 and 6 .

Analyze and solve pairs of simultaneous linear equations.
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether th line through the first pair of points intersects the line through the second pair.
Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the se of ordered pairs consisting of an input and the corresponding output. 1

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, linear function represented by an algebraic expression,

Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=$ s^{2} giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

To determine values to enter into the robot's programming, students will need to solve for a single variables in a linear equations (e.g. speed = distance required to travel divided by allowable time).

To determine values to enter into the robot's programming, students will need to solve for a single variables in a linear equations (e.g. speed = distance required to travel divided by allowable time).

To determine values to enter into the robot's programming, students will need to solve for a single variables in a linear equations (e.g. speed = distance required to travel divided by allowable time).

Not Applicable

To determine robot motion, students will solve real-world problems with two linear equations and two variables

By programming the robot to operate autonomously, students will see that for each given input there is only one set output.

Students may choose to represent and compare data in different ways when evaluating robot performance or in scouting other teams for alliances

In programming the robot, students will work with the linear function $y=m x$ $+b$ to have the robot complete challenges.
transparencies, or geometry software.

Understand congruence and similarity using
physical models, transparencies, or geometry software.

Understand congruence and similarity using
physical models,
transparencies, or geometry software.

Understand congruence and similarity using physical models, transparencies, or geometry software.

Understand congruence and similarity using physical models,
Use functions to model quantities.

Use functions to model relationships between

Understand congruence and similarity using
physical models,
transparencies, or geometry software.

Understand congruence

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Verify experimentally the properties of rotations, reflections, and translations:
a. Lines are taken to lines, and line segments to line segments of the same length.

Verify experimentally the properties of rotations, reflections, and translations

b. Angles are taken to angles of the same measure.

Verify experimentally the properties of rotations, reflections, and translations:
c. Parallel lines are taken to parallel lines.

Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.

Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.

Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, dilations; given two similar two-dimensional figures,
describe a sequence that exhibits the similarity between them.

To determine the values to enter into the robots programming to produce the desired result, students will need to first model the linear relationship between the input and required output (e.g. distance traveled vs. wheel rotation).

Students will work with real-world data to determine the relationship between two quantities.

As students program their robots to navigate, they will be working with lines and line segments.

As students program their robots to interact with challenges, they will be working with a variety of angles.

As students program their robots to navigate, they will be working with parallel lines..

As students build their robots, they will be able to explore the concepts of congruence and similarity using physical models.

As students program the robot to move and act autonomously, they will explore the effect of dilations, translations, rotations, and reflections on twodimensional figures.

As students construct the robot, they will work with objects that are similar as shown by a sequence of rotations, reflections, translations, and dilations.

Understand congruence and similarity using physical models, transparencies, or geometry software.

Geometry
Understand and apply the Pythagorean Theorem.

Geometry
Understand and apply the Pythagorean Theorem.

Geometry
Understand and apply the Pythagorean Theorem

Solve real-world and mathematical problems
Geometry involving volume of cylinders, cones, and spheres.

Investigate patterns of
Statistics and Probability association in bivariate data.

Investigate patterns of
Statistics and Probability association in bivariate data

Investigate patterns of
Statistics and Probability association in bivariate data.

Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.

Explain a proof of the Pythagorean Theorem and its converse.

Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Know the formulas for the volumes of cones, cylinders and spheres and use them to solve real-world and mathematical problems.

Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linea association, and nonlinear association.

Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by a straight line, and informally assess the model fit by
judging the closeness of the data points to the line.

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.

Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?

As students program the robot to act autonomously, they will establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

Not Applicable

Depending on the game challenge, students may use the Pythagorean Theorem to help determine the optimal placement of the robot to complete a particular task

Depending on the game challenge, students may use the Pythagorean Theorem to help determine the optimal placement of the robot to complete a particular task.
Depending upon the game challenge, students may need to calculate the volume of cylinders, cones, or spheres. For example, a challenge may require the robot to fill up a cylinder with rubber balls. By determining the volume of the cylinder the students will be able to program their robot to successfully complete the desired task(s).

Not Applicable

Not Applicable

Not Applicable

Not Applicable

