Rationale

There is no evidence that the standard is addressed as part of a FIRST $^{\circledR}$ program.

This standard potentially could be addressed as part of a FIRST ${ }^{\circledR}$ program either by actions that the coach/mentor takes when working with the students or by conditions established by the program for that given year.

The standard is clearly addressed by program activities.

Standards for Mathematical Practice

Standards for
Mathematical Practice and persevere in solving them

Standards for
Mathematical Practice

Reason abstractly and
quantitatively.

Mathematically proticient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the riginal problem in order to gain insight into its solution They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or rends. Younger students might rely on using concrete bjects or pictures to help conceptualize and solve a nrnhlom MAathomatiralll/n ronfiriont aturanta rhork tho
Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability oo decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing

Instructional Exemplar

FIRST®

 Alignment\square Alignm

As part of the FIRST® LEGO® League experience students will be
expected to analyze the various missions, develop solutions, test and
refine their answers all while using mathematical formulas and data. These actions are at the heart of the mathematical practice of making sense of problems and persevering to determine solutions.

Students in the FIRST® LEGO® League program will solve a variety of problems allowing them to develop their ability to reason both
quantitatively and abstractly as they work to solve problems associated with designing, building and programming their robot.

Standards for Mathematical Practice

 proficient from which the data arose. Mathematicall proficient students are also able to compare theeffectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made
 mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a tudent might use geometry to solve a design problem or e a function to describe how one quantity of interest ands on another. Mathematically proficient sude depends on what they know are comfortable making and ssumptions and approximations to simplify omplicated situation, realizing that these may need evision later. They are able to identy mportan quantilies in a practical situation and map their elationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analvze those relationshins mathematicallv to draw
Mathematically proticient students consider the availabie ools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic eometry software. Proficient students are sufficiently amiliar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of unctions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that echnology can enable them to visualize the results of varying assumptions, explore consequences, and ompare predictions with data. Mathematically proficient students at various grade levels are able to identify elevant external mathematical resources, such as digital entent located on a wehcite and use them to noce or context from which the data arose. Mathematically describe a situation. In middle grades, a student might or s

Standards for Mathematical Practice

Use appropriate tools strategically.

Building off the first practice, students in the $\operatorname{FIRST®}$ LEGO® League program will interact with their peers and be expected to provide reasoned critique of solutions developed supported by evidence and viable arguments.
 tated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can ecognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to he arguments of others. They reason inductively about he arguments of uusible arguments that take into account

Students in the FIRST® LEGO® League program will use mathematics and mathematical tools (e.g., charts, graphs, tables) to create different models that inform choices they make about robot design and programming.

Students in the FIRST® LEGO® League program will use a variety of ageappropriate mathematical tools (e.g., charts, graphs, tables, calculators) to solve mathematical problems encountered as they work to program their robot and optimize their strategy to address the various missions.

Standards for Mathematical Practice

Standards for Mathematical Practice

Standards for Mathematical Practice

Look for and make use of structure.

Look for and express regularity in repeated reasoning

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They tate the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and abeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precisio appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have earned to examine claims and make explicit use of definitions
Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as even and three more, or they may sort a collection of hapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $\times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $\mathrm{x} 2+9 \mathrm{x}+14$, older tudents can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a
geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see omplicated things, such as some algebraic expressions, as single objects or as being composed of several bjects. For example, they can see $5-3(x-y) 2$ as 5 minus positive number times a square and use that to realize hat its value cannot be more than 5 for any real numbers x and y .

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation f slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$ oticing the regularity in the way terms cancel when xpanding $(x-1)(x+1),(x-1)(x 2+x+1)$, and (x) $\times 3+x 2+x+1)$ might lead them to the general formula or the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain versight of the process, while attending to the details hey continually evaluate the reasonableness of their intermediate results.

 ey ities

Students in the FIRST® LEGO® League program in order to complete the missions in the most efficient manner possible will have to develop their mathematical precision as they program their robot to interact with the different mission structures as well as navigate the game board

Students in the FIRST® LEGO® League program will learn to recognize and use patterns to solve problems and challenges. In particular, students will take advantage of the properties of different shapes when they build heir robot, program its movements, and determine solutions for the different missions.

Students in the FIRST® LEGO® League program will be able to experience regularity in repeated reasoning as they program their robot to complete the different missions in the Robot Game.

Analyze proportional
relationships and use

Ratios and Proportional Relationships	relationships and use them to solve real-world and mathematical problems.
Ratios and Proportional Relationships	Analyze proportional relationships and use them to solve real-world and mathematical problems.
Ratios and Proportional Relationships	Analyze proportional relationships and use them to solve real-world and mathematical problems.
Ratios and Proportional Relationships	Analyze proportional relationships and use them to solve real-world and mathematical problems.
Ratios and Proportional Relationships	Analyze proportional relationships and use them to solve real-world and mathematical problems.
Ratios and Proportional Relationships	Analyze proportional relationships and use them to solve real-world and mathematical problems.
The Number System	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
The Number System	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

Compute unit rates associated with ratios of fractions including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2 miles per hour.

Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
dentify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $\mathrm{t}=\mathrm{pn}$.

Explain what a point (x, y) on the graph of a proportiona relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, ees, percent increase and decrease, percent error.

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; epresent addition and subtraction on a horizontal or vertical number line diagram.
a. Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 harge because its two constituents are oppositely charged.
Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; epresent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.A.1.B b. Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $|\mathrm{q}|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). interpret sums of rational numbers by describing realworld contexts.

During programming the robot to navigate the game board and complete between different elements such as wheel rotation and distance traveled, distanced traveled and speed.

Using data collected from trials, students will need to determine which

During programming the robot to navigate the game board, the students will use data they collect from trials to identify the constants associated with robot travel.

Students will have to create equations to represent the proportions that hey find in order to successfully program the robot.

Though robot trials, students will have the opportunity to explain the implications of various values in proportional relationships surrounding wheel rotations, distance, and measurements.

While programming the robot to navigate the game board and complete is the students will need to use ratios to compare the relationships between different elements such as wheel rotation and distance traveled, istanced traveled and speed.

While programming the robot to navigate the game board and complete in und position

Studer ne to understand that $p+q$ as the number located a whether q is positive or negative to develop their robot's path of travel movements will determine the distance and direction the robot will travel.

Apply and extend previous understandings of operations with
fractions to add, subtract,
multiply, and divide
rational numbers.

Apply and extend previous understandings of operations with
fractions to add, subtract, multiply, and divide rational numbers.

Apply and extend previous understandings of operations with
fractions to add, subtract
multiply, and divide rational numbers.

Apply and extend previous understandings
of operations with
fractions to add, subtract, multiply, and divide rational numbers.

Apply and extend previous understandings of operations with
The Number System
fractions to add, sub multiply, and divide rational numbers.

Apply and extend previous understandings of operations with
fractions to add, subtract multiply, and divide rational numbers.

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.A.1.C
c. Understand subtraction of rational numbers as adding he additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number ine is the absolute value of their difference, and apply this principle in real-world contexts.
Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
d. Apply properties of operations as strategies to add and subtract rational numbers.

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers
a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers
b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real world contexts.

Apply and extend previous understandings of multiplication and division and of fractions to multiply and multiplication and division
. Apply properties of operations as strategies to multiply and divide rational numbers.

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number erminates in 0s or eventually repeats.

Students will need to understand that $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative to develop their robot's path of travel. Adding a positive number or negative number to the programmed movements will determine the distance and direction the robot will travel.

Throughout the programming process, students will apply their knowledge f rational numbers to add and subtract

Throughout the programming process, students will apply their knowledge of rational numbers to multiply and interpret results in a real-world context

Throughout the programming process, students will apply their knowledge f rational numbers to divide and interpret results in a real-world context.

Throughout the programming process, students will apply their knowledge of rational numbers to multiply and divide.

Throughout the programming process, students will divide numbers nvolving numbers that either repeat or end in zero.

The Number System	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.	7.NS.A. 3	Solve real-world and mathematical problems involving the four operations with rational numbers.
Expressions and Equations	Use properties of operations to generate equivalent expressions.	7.EE.A. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
Expressions and Equations	Use properties of operations to generate equivalent expressions.	7.EE.A. 2	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + $0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05 ."
Expressions and Equations	Solve real-life and mathematical problems using numerical and algebraic expressions and equations.	7.EE.B. 3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar $93 / 4$ inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
	Solve real-life and		Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
Expressions and Equations	mathematical problems using numerical and algebraic expressions and equations.	7.EE.B.4.A	a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?

Throughout the programming process, students will solve real-world problems using the four mathematical operations.

As part of the programming process students will develop equations that use variables so that they can determine input values for a wide range of conditions (e.g. distance equals speed over time)

During programming students will have to rework the equations they develop to create simpler forms

Throughout programming, students will be confronted with real-world mathematical problems that they will need to solve using the four mathematical operations, positive, and negative rational numbers.
if the coach/mentor chooses, students can be presented with word problems derived from real-world situations from the missions that involve equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers.

Solve real-life and algebraic expression and equations.

Draw, construct, and describe geometrical figures and describe the relationships between them.

Draw, construct, and describe geometrica figures and describe the relationships between them.

Draw, construct, and describe geometrical figures and describe the relationships between them.

Solve real-life and mathematical problems
Geometry involving angle measure, area, surface area, and volume
Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
Solve real-life and mathematical problems involving angle measure area, surface area, and volume.

Use random sampling to
Statistics and Probability draw inferences about a population.

Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example As a salesperson, you are paid $\$ 50$ per
week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

Draw (freehand, with ruler and protractor, and with echnology) geometric shapes with given conditions. ocus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids

Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal erivation of the relationship between the circumference and area of a circle

Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure

Solve real-world and mathematical problems involving area, volume and surface area of two- and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.

Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a ample are valid only if the sample is
representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
if the coach/mentor chooses, students can be presented with word problems derived from real-world situations from the missions that involve nequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers.

To aid in the programming process, students may create scale drawings of the game board and various missions.

As part of robot construction or programming, students may need to draw different triangles in order to communicate ideas or make calculations.

In robot construction or mission analysis, students may need to deconstruct three-dimensional figures into two-dimensional planes.

To optimize the movement of their robot, students will need to use the concepts of area and circumference of a circle to determine the distance that the robot moves based on the size of the wheels and the turning radius of the robot

In order to have the robot complete missions, students will work with different angles to determine robot motion and placement.

Through the completion of missions in the Robot Game, students will work with many objects of different sizes and shapes. The coach/mentor could direct students to create and solve problems involving area, volume and surface area of objects found on the game board.

If students collect the results of practices attempts to complete certain missions they will have to opportunity to understand the relationship between values collected in a sample and values distributed over a population.

Use random sampling to
Statistics and Probability draw inferences about a population.

Draw informal
Statistics and Probability comparative inference about two populations.

Draw informal
Statistics and Probability comparative inferences about two populations.

Investigate chance
Statistics and Probability processes and develop, use, and evaluate probability models.

Investigate chance
Statistics and Probability processes and develop, use, and evaluate probability models.

Investigate chance
Statistics and Probability processes and develop, use, and evaluate probability models.

Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in
estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from he book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the stimate or prediction might be

Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball eam is 10 cm greater than the mean height of players on e soccer team, about twice the variability (mean absolute deviation) on either team; on
dot plot, the separation between the two distributions of heights is noticeable.

Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For xample, decide whether the words in a chapter of a seventh-grade science book are generally longer han the words in a chapter of a fourth-grade science book.

Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of he event occurring. Larger numbers indicate greater ikelihood. A probability near 0 indicates an unlikely event probability around $1 / 2$ indicates an event hat is neither unlikely nor likely, and a probability near 1 ndicates a likely event.

Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict he approximate relative frequency given the
robability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 imes, but probably not exactly 200 times.

Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good explain possible sources of the discrepancy.
7.SP.C.7.A
a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability hat a girl will be selected.
f students collect the results of practices attempts to complete certain missions they will have to opportunity to evaluate the variance observed in estimates or predictions

Not Applicable

If students collect the results of practices attempts to complete certain missions they will have to opportunity to draw comparative inferences about the results of future missions.

If students collect the results of practices attempts to complete certain missions they will have to opportunity to determine the probability of a chance event (e.g., number of times/attempts that the robot successfully completes the mission)

If students collect the results of practices attempts to complete certain missions they will have to opportunity to determine the probability of a chance event (e.g., number of bricks captured by the robot)

If the coach/mentor chooses, the students may develop probability models of varying complexity and accuracy to determine game strategy.

Investigate chance

Statistics and Probability processes and develop, use, a probability models

Investigate chance
Statistics and Probability processes and develop, use, and evaluate probability models.

Investigate chance
Statistics and Probability processes and develop, use, and evaluate probability models.

Investigate chance
Statistics and Probability processes and develop, use, and evaluate probability models.
. Develop a probability model (which may not be niform) by observing frequencies in data generated from chance process. For example, find the approximate probability that a spinning penny will land heads up or tha tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
a. Understand that, just as with simple events, the probability of a compound event is the fraction of utcomes in the sample space for which the compound event occurs

Find probabilities of compound events using organized ists, tables, tree diagrams, and simulation.
b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event

Find probabilities of compound events using organized ists, tables, tree diagrams, and simulation.
c. Design and use a simulation to generate frequencies
7.SP.C.8.C for compound events. For example, use random digits a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

If the coach/mentor chooses, the students may develop probability model of varying complexity and accuracy to determine game strategy.

