Rationale

There is no evidence that the standard is addressed as part of a FIRST $^{\circledR}$ program.

This standard potentially could be addressed as part of a FIRST ${ }^{\circledR}$ program either by actions that the coach/mentor takes when working with the students or by conditions established by the program for that given year.

The standard is clearly addressed by program activities.

Standards for Mathematical Practice

Standards for Mathematical Practice and persevere in solving them.

Standards for
Mathematical Practice

Reason abstractly and quantitatively.

Mathematically proticient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a and solve a nrohlom Mathomatirall/ nrofiriont ctuidontc rhork
Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing

Instructional Exemplar

FIRST®

 Alignment\square

As part of the FIRST® LEGO® League experience students will be

expected to analyze the various missions, develop solutions, test and
refine their answers all while using mathematical formulas and data. These
actions are at the heart of the mathematical practice of making sense of problems and persevering to determine solutions.

Students in the FIRST® LEGO® League program will solve a variety of problems allowing them to develop their ability to reason both
quantitatively and abstractly as they work to solve problems associated with designing, building and programming their robot.

Standards for Mathematical Practice

 proficient from which the data arose. Mathematicall proficient students are also able to compare theeffectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made
 mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a tudent might use geometry to solve a design problem or e a function to describe how one quantity of interest ands on another. Mathematically proficient depends on what they know are comfortable making and ssumptions and approximations to simplify omplicated situation, realizing that these may need evision later. They are able to identy mportan quantilies in a practical situation and map their elationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analvze those relationshins mathematicallv to draw
Mathematically proticient students consider the availabie ools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic eometry software. Proficient students are sufficiently amiliar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of unctions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that echnology can enable them to visualize the results of varying assumptions, explore consequences, and ompare predictions with data. Mathematically proficient students at various grade levels are able to identify elevant external mathematical resources, such as digital entent located on a wehcite and use them to noce or context from which the data arose. Mathematically describe a situation. In middle grades, a student might or s

Standards for Mathematical Practice

Use appropriate tools strategically.

Building off the first practice, students in the $\operatorname{FIRST®}$ LEGO® League program will interact with their peers and be expected to provide reasoned critique of solutions developed supported by evidence and viable arguments.
 tated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can ecognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to he arguments of others. They reason inductively about he arguments of uusible arguments that take into account

Students in the FIRST® LEGO® League program will use mathematics and mathematical tools (e.g., charts, graphs, tables) to create different models that inform choices they make about robot design and programming.
tudents in the FIRST® LEGO® League program will use a variety of ageappropriate mathematical tools (e.g., charts, graphs, tables, calculators) to solve mathematical problems encountered as they work to program their robot and optimize their strategy to address the various missions.

Standards for Mathematical Practice

Standards for Mathematical Practice

Standards for Mathematical Practice

Look for and make use of structure.

Look for and express regularity in repeated reasoning

Mathematically proficient students try to communicate discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including位e the equal sign consistently and appropriately. They re careful about specifying units of measure and re careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.
Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as even and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $\mathrm{x} 2+9 \mathrm{x}+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They ecognize the significance of an existing line in a
geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several bjects. For example, they can see $5-3(x-y) 2$ as 5 minus $5-3(x-y) 2$ as 5 min positive number times a square and use that to realize hat its value cannot be more than 5 for any real numbers x and y .

Mathematically proficient students notice if calculations are repeated, and look both for general methods and fo shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have repeating decimal. By paying attention to the calculation f slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$ oticing the regularity in the way terms cancel whe expanding $(x-1)(x+1),(x-1)(x 2+x+1)$, and ($x-$) $(x 3+x 2+x+1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain versight of the process, while attending to the details hey continually evaluate the reasonableness of their intermediate results.
\square Students in the FIRST® LEGO® League program in order to complete the missions in the most efficient manner possible will have to develop their mathematical precision as they program their robot to interact with the different mission structures as well as navigate the game board

Students in the FIRST® LEGO® League program will learn to recognize and use patterns to solve problems and missions. In particular, students will take advantage of the properties of different shapes when they build heir robot, program its movements, and determine solutions for the different missions

Students in the FIRST® LEGO® League program will be able to xperience regularity in repeated reasoning as they program their robot to complete the different missions in the game.

Understand ratio

Ratios and Proportional concepts and use ratio

 Relationships reasoning to solve problems.Understand ratio
Ratios and Proportional concepts and use ratio Relationships reasoning to solve problems.

Understand ratio
Ratios and Proportional concepts and use ratio Relationships reasoning to solve problems.

Understand ratio

 problems.Understand ratio

Understand the concept of a ratio and use ratio language o describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for very 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."

Understand the concept of a unit rate a / b associated with ratio a:b with $b \neq 0$, and use rate language in the contex of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar,
so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."1

Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
a. Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the ables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables o equivalent ratios, tape diagrams, double number line diagrams, or equations.
b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what
rate were lawns being mowed?
Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
c. Find a percent of a quantity as a rate per 100 (e.g. 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent.
Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing

During programming the robot to navigate the game board and complete missions, the students will need to use ratios to compare the relationships between different elements such as wheel rotation and distance traveled, distanced traveled and speed.

During programming the robot to navigate the game board and complete missions, the students will need to use ratios to compare the relationships between different elements such as wheel rotation and distance traveled, distanced traveled and speed.

In order to correctly navigate the game board, students will need to collect data in order to program the robot. They may record the data in tables of equivalent ratios if they choose or if they are directed to do so.

During programming the robot to navigate the game board and complete missions, the students will use ratios to compare the speed of the robot and how quickly it can move around the board.

While evaluating their game strategy, students will have the opportunity to calculate percents to determine whether or not a particular strategy is successful.

To accurately program the robot, students will have to use ratio reasoning o convert amongst measurement units in the English and Metric systems of measurement.

Apply and extend
previous understandings
The Number System
tation and by fractions.

The Number System
Compute fluently with multi-digit numbers and find common factors and multiples.
Compute fluently with
The Number System
multi-digit numbers and
find common factors and multiples.

Compute fluently with
The Number System
multi-digit numbers and
find common factors and multiples.

Apply and extend
previous understandings
of numbers to the system of rational numbers.

Apply and extend
previous understandings of numbers to the system of rational numbers.

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to epresent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=$ $8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, (a/b) $\div(\mathrm{c} / \mathrm{d})=$ ad/by.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$ cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4 \mathrm{mi}$ and area $1 / 2$ square mi? divide multi-digit decimals using the standard algorithm for each operation.

Find the greatest common factor of two whole numbers ess than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a
um of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.

Understand that positive and negative numbers are used ogether to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative lectric charge); use positive and
negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

Understand a rational number as a point on the number ine. Extend number line diagrams and coordinate axes amiliar from previous
grades to represent points on the line and in the plane with negative number coordinates
a. Recognize opposite signs of numbers as indicating cations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite

By asking students to determine the points they can earn by completing different tasks under a variety of conditions (e.g. if $1 / 2$ of the tasks are completed each earning partial points) they will need to use the skill of dividing or multiplying fractions by fractions.

Throughout the process of robot construction and programming (e.g. determine the average time it takes the robot to complete each mission) students will be required to divide multi-digit numbers.

Throughout the process of robot construction and programming (e.g determine the average time it takes the robot to complete each mission) students will be required to different mathematical operations.

If the coach/mentor chooses, students may factor numbers to simplify calculations or to create values to be used in programming.

During programming of the robot, students will be able to observe positive and negative numbers used to illustrate movement of the robot in opposite directions.

During programming of the robot, students will be able to observe positive and negative numbers used to illustrate opposite directions around a ommon point (e.g., 0).

Apply and extend
The Number System previous understandings of rational numbers.

Apply and extend
The Number System
previous understandings of numbers to the system of rational numbers.

Apply and extend
The Number System previous understandings
of numbers to the system of rational numbers.

Apply and extend
The Number System of numbers to thandings of rational numbers.

Apply and extend
The Number System previous understandings of numbers to the system of rational numbers.

Apply and extend
previous understandings of numbers to the system of rational numbers.

The Number System

Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.

Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.

Understand a rational number as a point on the number ne. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.
Understand ordering and absolute value of rationa numbers.
6.NS.C.7.A a. Interpret statements of inequality as statements about he relative position of two numbers on a number line iagram. For example, interpret $-3>-7$ as a statement hat -3 is located to the right of -7 on a number line oriented from left to right.
Understand ordering and absolute value of rational numbers.
6.NS.C.7 B b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$
Understand ordering and absolute value of rational numbers.
. Understand the absolute value of a rational number as 6.NS.C.7.C its distance from 0 on the number line; interpret absolute its distance from 0 on
value as magnitude
for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $|-30|=30$ to describe the size of the debt in dollars.
Understand ordering and absolute value of rational numbers.
6.NS.C.7.D
d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.

During programming of the robot, students will be able to observe positive and negative numbers used to illustrate movement around a common point $(0,0)$. Robot movement could be used to illustrate a coordinate plane and quadrants.

During programming of the robot, students will be able to observe positive and negative numbers used to illustrate movement around a common point (0,0). Robot movement could be used to illustrate a coordinate plane and quadrants.

Not Applicable

Not Applicable

Not Applicable

The Number System	Apply and extend previous understandings of numbers to the system of rational numbers.	6.NS.C. 8	Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. dollars represents a debt greater than 30 dollars.	As part of the programming process, students could use ordered pairs on a coordinate plane to represent mission locations and find the distances between the points.
Expressions and Equations	Apply and extend previous understandings of arithmetic to algebraic expressions.	6.EE.A. 1	Write and evaluate numerical expressions involving whole. number exponents.	Students could be asked to formalize mathematical calculations into equations with exponents when working with the mathematics of circles (wheel rotations) and programming loops.
Expressions and Equations	Apply and extend previous understandings of arithmetic to algebraic expressions.	6.EE.A.2.A	Write, read, and evaluate expressions in which letters stand for numbers. a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-\mathrm{y}$.	As part of the programming process students will develop equations that use variables so that they can determine input values for a wide range of conditions (e.g. distance equals speed over time)
			Write, read, and evaluate expressions in which letters stand for numbers.	
Expressions and Equations	Apply and extend previous understandings of arithmetic to algebraic expressions.	6.EE.A.2.B	b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.	If the coach/mentor chooses, students can explain the equations they develop using appropriate mathematical terms.
			Write, read, and evaluate expressions in which letters stand for numbers.	
Expressions and Equations	Apply and extend previous understandings of arithmetic to algebraic expressions.	6.EE.A.2.C	c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of	To correctly program the robot, students will need to enter real-world measurements into their equations thereby generating values to enter into the computer.
			Operations). For example, use the formulas $V=s^{3}$ and A $=6 \mathrm{~s}^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	
Expressions and Equations	Apply and extend previous understandings of arithmetic to algebraic expressions.	6.EE.A. 3	Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 \mathrm{x}+18 \mathrm{y}$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	While comparing different programming options, students will have the opportunity to work with equivalent expressions and evaluate the appropriateness of each for their purposes. Students could be asked to formalize this work into identification of properties used.
Expressions and Equations	Apply and extend previous understandings of arithmetic to algebraic expressions.	6.EE.A. 4	Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.	While comparing different programming options, students will have the opportunity to work with equivalent expressions and evaluate the appropriateness of each for their purposes.

Expressions and Equations	Reason about and solve one-variable equations and inequalities.	6.EE.B. 5
Expressions and Equations	Reason about and solve one-variable equations and inequalities.	6.EE.B. 6
Expressions and Equations	Reason about and solve one-variable equations and inequalities.	6.EE.B. 7
Expressions and Equations	Reason about and solve one-variable equations and inequalities.	6.EE.B. 8
Expressions and Equations	Represent and analyze quantitative relationships between dependent and independent variables.	6.EE.C. 9
Geometry	Solve real-world and mathematical problems involving area, surface area, and volume.	6.G.A. 1
Geometry	Solve real-world and mathematical problems involving area, surface area, and volume.	6.G.A. 2
Geometry	Solve real-world and mathematical problems involving area, surface area, and volume.	6.G.A. 3

Understand solving an equation or inequality as a proce of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true
Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand ny number in a specified set
Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for ases in which p, q and x are all nonnegative rational numbers.

Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ to represent constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or x <c have infinitely many solutions;
epresent solutions of such inequalities on number line diagrams.

Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, though of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant peed, list and graph ordered pairs of distances and and wite the equation $d=65$ to represent the elationship between distance and time

Find the area of right triangles, other triangles, specia quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply hese techniques in the context of
solving real-world and mathematical problems.
Find the volume of a right rectangular prism with fractiona edge lengths by packing it with unit cubes of the ppropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the
rmulas $V=1 \mathrm{wh}$ and $\mathrm{V}=\mathrm{b} h$ to find volumes of righ ectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Draw polygons in the coordinate plane given coordinates or the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
o evaluate the performance of the robot and their programming strategy,
students will compare the relationship between dependent and
independent variables (e.g. time between missions = distance between missions divided by speed; where distance between is a set value).

While programming the robot, students will use solve real-world problems using a variable to represent a number that can vary depending upon conditions
hile programming the robot, students will use solve real-world problems using a variable to represent a number that can vary depending upon conditions

While programming the robot, students will use inequalities to evaluate the relationships between variables that can have a wide range of real-world values (e.g., wheel-size, number of rotations)

To evaluate the performance of the robot and their programming strategy, tudents will compare the relationship between dependent and independent variables (e.g. time between missions = distance between missions divided by speed; where distance between is a set value).

During the process of building the robot, students can investigate the strength of using different shapes in their design and could be directed to find the area of these shapes as well.

Not Applicable
determine distances that the robot will travel, students can be directed to use polygons they create on the coordinate plane.

Solve real-world and
Geometry mathematical problem involving area, surface area, and volume

Statistics and Probability	Develop understanding of statistical variability.
Statistics and Probability	Develop understanding of statistical variability.
Statistics and Probability	Develop understanding of statistical variability.
Statistics and Probability	Summarize and describe distributions.
Statistics and Probability	Summarize and describe distributions.
Statistics and Probability	Summarize and describe distributions.
Statistics and Probability	Summarize and describe distributions.
Statistics and Probability	Summarize and describe distributions.

Represent three-dimensional figures using nets made up f rectangles and triangles, and use the nets to find the rinace area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Recognize a statistical question as one that anticipates variability in the data related to the question and accounts or it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my chool?" is a statistical question because one anticipates variability in students' ages

Understand that a set of data collected to answer a statistical question has a distribution which can be lescribed by its center, spread, and overall shape Recognize that a measure of center for a numerical data et summarizes all of its values with a single number while a measure of variation describes how its value vary with a single number.
Display numerical data in plots on a number line, cluding dot plots, histograms, and box plots. ummarize numerical data sets in relation to their context, such as by:
a. Reporting the number of observations

Summarize numerical data sets in relation to their context, such as by:
b. Describing the nature of the attribute unde investigation, including how it was measured and its units f measurement.
Summarize numerical data sets in relation to their context, such as by:
c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.

Summarize numerical data sets in relation to their context, such as by:
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered

Not Applicable

Students will need to use statistics in determining the reliability of their robot and attachments in completing missions. Game strategy for completing missions require students to collect the results of practice attempts. Challenges may require investigation of data and statistics to provide support for the innovative solution proposed by students.

If students collect the results of practice attempts to complete certain missions, they will have to opportunity to evaluate the distribution of the data.

If students collect the results of practice attempts, they will have the opportunity to evaluate the meaning of the center of the data

If students collect the results of practice attempts, they will have data that they can plot to evaluate its meaning

If students collect the results of practice attempts, they will have the opportunity to evaluate the number of observations recorded

If the coach/mentor chooses, students can discuss the concept being measured, how it was measured, and appropriate units

If students collect data about practice attempts, students will have the opportunity to evaluate the meaning of the median or mode as well the impact that the range of variability has on their strategies and
programming.

